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Summary. The term "size hierarchy" has been used fre- 
quently by plant population biologists but it has not been 
defined. Positive skewness of the size distribution, which 
has been used to evaluate size hierarchies, is inappropriate. 
We suggest that size hierarchy is equivalent to size inequali- 
ty. Methods developed by economists to evaluate inequali- 
ties in wealth and income, the Lorenz curve and Gini Coef- 
ficient, provide a useful quantification of inequality and 
allow us to compare populations. A measure of inequality 
such as the Gini Coefficient will usually be more appro- 
priate than a measure of skewness for addressing questions 
concerning plant population structure. 

Introduction 

Most plant populations exist as size hierarchies of individ- 
uals. By size hierarchy we mean a frequency distribution 
of individual plant sizes in which relatively few individuals 
contribute most of the population's biomass and most indi- 
viduals are relatively small. Such size frequency distribu- 
tions have been described in laboratory and greenhouse 
populations of plants (Yoda et al. 1963 ; Obeid et al. 1967 ; 
Ford 1975) and in natural field populations (Ogden 1970). 
Size differences may be caused either directly or through 
variation in growth rates by factors such as age differences, 
genetic variation, heterogeneity of resources, competition, 
or the effects of herbivores, parasites or pathogens. The 
ecological and evolutionary implications of size hierarchies 
in plant populations are enormous. There is evidence (e.g. 
Solbrig 1981; Werner and Caswell 1977; Sohn and Poli- 
cansky 1977) that size is correlated with fitness in plants, 
and an inordinately large proportion of a plant population's 
genes may be descended from a very small number of 
individuals in previous generations (Leverich and Levin 
1979). 

Researchers have not addressed the phenomenon of size 
hierarchies in plant populations directly; the term "size hi- 
erarchy" is vague and has had different connotations as- 
cribed to it by different researchers. Here we attempt to 
clarify the concept and provide a mathematical definition. 

The definition of size hierarchy 

The intuitive definition of a term, the way it is most com- 
monly used, is the appropriate place to start if we are to 
make it more explicit. Unfortunately, the term hierarchy 

has different meanings in different disciplines, and this has 
contributed to confusion about its use by plant population 
biologists with reference to size frequency distributions. Hi- 
erarchy is defined by the Shorter Oxford English Dictionary 
(Third Edition) as "a  body of persons or things ranked 
in grades, orders or classes ... ". This is consistent with the 
concept of a size distribution, in which one ranks individ- 
uals and assigns them to successively larger size classes. 
We believe that size hierarchy most appropriately refers 
to characteristics of the size distribution, and does not, by 
definition, imply a hierarchy of power or exploitation. 
These hierarchies may also exist and may be related to 
size, but this must be demonstrated. As used by researchers, 
the t e rm"  size hierarchy" is usually applied to size distribu- 
tions which have certain attributes: (1) The population con- 
tains large variation in individual sizes; (2) There are rela- 
tively few large individuals and many small ones; (3) These 
few large individuals contribute greatly to the population's 
biomass, i.e. they are dominant in the sense of vegetation 
science. 

Beyond referring to size hierarchies loosely, several re- 
searchers have considered positive skewness of the size dis- 
tribution to be the essential characteristic of a size hierar- 
chy. Standardized measures of skewness based upon the 

fT 

third moment around the mean (e.g. gz=n  Z (xi-2)3/ 
i = 1  

( n - l )  ( n - 2 ) s  3) (Sokal & Rohlf 1981) have been used to 
measure the degree hierarchy. For example, an increase in 
positive skewness of the size distribution with increasing 
plant density has been considered evidence for the hypothe- 
sis that interference results in dominance of some individ- 
uals and suppression of others (White and Harper 1970); 
similarly, decreasing skewness with increasing density has 
been considered evidence against the dominance/suppres- 
sion hypothesis (Turner and Rabinowitz 1983). We believe 
this to be inappropriate and misleading. Positive skewness 
of the size frequency distribution and size hierarchy overlap 
little in meaning as skewness reflects only the second of 
the three aspects of a size hierarchy listed above. Although 
the degree of variation in sizes is important to the intuitive 
notion of a size hierarchy, measures of skewness are de- 
signed to be insensitive to the degree of variability. A popu- 
lation consisting of fifty individuals of size one unit and 
five individuals of two units is less of a size hierarchy than 
a population with the same number of small individuals 
and with five individuals of ten units, although the distribu- 
tions are equally skewed (Fig. 1). Put another way, the vari- 
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Fig. I a--e. Three size frequency distributions which are equally 
skewed (gl = 2.93) but very different in their degree of hierarchy 
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Fig. 2a, b. Two non-skewed size frequency distributions. Distribi- 
tion a is much more hierarchical than distribution b 

ation in the size of  individuals relative to the mean size 
of  an individual is important  to the notion of  hierarchy 
[components (1) and (3) above] although this is not  ad- 
dressed by any measure o f  skewness or asymmetry. For  
example, if the difference in size between the largest and 
smallest individuals in a population is only a few percent, 
the population would not be very hierarchical, although 
it may have a highly skewed size distribution (Fig. 1 c). This 
is especially relevant for large woody perennials. An even- 
aged stand of  large trees may show a highly skewed size 
frequency distribution, but this would not be of  great inter- 
est if the coefficient of  variation of  sizes were very low. 
The standard practive of  comparing size frequency distribu- 
tions which are expressed in terms of  a certain number 
(usually twelve or twenty) of  size classes without any units 
for these classes (e.g. Koyama  & Kira 1956; Ford  1975) 
obscures this very point. Finally, if sizes vary greatly relative 
to the mean there may be a considerable degree of  hierar- 
chy, even if the size frequency distribution is not skewed 
(Fig. 2a). The largest few percent of  the population may 
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Fig. 3. The Lorenz curve as applied to size inequalities or hierar- 
chies in plant populations. The area between the curve and the 
line of perfect equality expressed as a proportion of the area under 
the diagonal is called the Gini Coefficient and is a measure of 
inequality (after Sen 1973) 
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still account for much of  the total biomass, whereas a simi- 
lar distribution with the same variance but a larger mean 
(Fig. 2 b) would be considered less of  a hierarchy. 

We conclude that it is the concept of  size inequality 
or concentration, not asymmetry, which corresponds to the 
notion of  a size hierarchy. I f  all individuals are equal in 
size there is no size hierarchy; the degree to which biomass 
is concentrated among a few individuals is the degree o f  
the size hierarchy. 

Results 

To find a measure of  hierarchy or inequality we have looked 
into the literature of  economics. Economists have used the 
Lorenz curve (Lorenz 1905; Bowman 1946) to represent 
graphically the degree of  inequality in the distribution of  
wealth or income in societies. This method can be applied 
to size inequalities in plant populations (Fig. 3). Individuals 
are ranked according to biomass and the cumulative per- 
centage o f  biomass is plotted against the cumulative per- 
centage of  the population. Perfect equality will result in 
a diagonal line from the origin to the upper right corner. 
While economists do not  agree on what is the best measure 
of  economic inequality because of  problems in defining a 
relevant social welfare function (Atkinson 1970), the degree 
of  deviation from the diagonal is a good measure of  in- 
equality. This can be evaluated as the ratio of  the area 
between the diagonal and the curve over the triangular area 
under the diagonal, and is called G, the Gini Coefficient 
(Gini 1912; Ricci 1916). Thus, G has a minimum value 
of  0, when all individuals are equal, and a theoretical maxi- 
mum of  1.0 in an infinite population in which all individuals 
but one have a value of  0: the ultimate in inequality. G 
is equal to one half  of  the relative mean difference, i.e. 
the arithmetic average of  the absolute values of  the differ- 
ences between all pairs of  individuals (Sen 1973): 

G=_i-lj-1 
2n2~ 

The behavior of  G corresponds well to the behavior o f  our 
intuitive concept of  a size hierarchy. For  example, the 
values of  G for the exemplary size frequency distributions 
in Fig. I are (a) 0.075, (b) 0.409 and (c) 0.001. The Gini 
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Fig. 4. Two Lorenz curves which have the same Gini Coefficient 

Coefficient has many of  the characteristics we would like 
in a measure of  inequality. One of  these qualities is that 
its value does not  change if each individual's size is raised 
in the same proportion. Thus it is possible to compare in- 
equalities in populations with different means, or in one 
population over time. 

The Gini Coefficient may be thought  of  as the most  
important  summary statistic for the Lorenz curve but, like 
any summary statistic, it does not  contain all the informa- 
tion in the data. Different Lorenz curves can have the same 
value for G, e.g. curves a and b in Fig. 4. In curve 4a  
the inequality present is primarily due to the very few large 
individuals and the equality present is mostly f rom equality 
among the smaller individuals. In curve 4b the inequality 
is primarily from the occurrence of  very small individuals, 
while the equality present reflects equality among the nu- 
merous larger individuals. In addition to measuring overall 
inequality through the Gini statistic, analysis of  Lorenz 
curves may contribute to our understanding of  plant size 
distributions. For  example, linear portions of  the Lorenz 
curve represent modes. Bimodality will appear as two rela- 
tively linear sections separated by a bulge, which reflects 
a valley in the distribution. Mathematical analysis of  Lor-  
enz curves may be useful in evaluating bimodality and other 
aspects of  size distributions. 

The calculated G for a small sample is a biased estimator 
of  the population's  G. Sample G's can be multiplied by 
n / ( n -  1) to give unbiased estimates of  the true population 
G. Obtaining error estimates for G has proven challenging 
because it is unclear what, if any, assumptions can be made 
about  the underlying distribution of  Gini Coefficients in 
the real world. Recently developed "boo ts t rapp ing"  proce- 
dures (Diaconis and Efron 1983; Efron 1982) enable us 
to obtain error estimates for many sample statistics without 
assumptions by examining the statistics distribution among 
numerous artificial samples created from the sample. Boot- 
strapping has been employed to obtain confidence intervals 
for Gini Coefficients of  plant size distributions, and to test 
for significant differences between populations (Weiner 
MS). 

Whether or not  one agrees with our use of  the term 
size hierarchy, inequality is an important  aspect o f  plant 
size and reproductive distributions which has not been given 
attention. We propose that researchers employ the Gini 

Coefficient rather than measures of  skewness when asking 
questions about  plant population structure. For  example, 
increases in size inequality with increasing density is what 
we should expect if plant interference results in dominance 
and suppression. 
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