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MODELING THE GROWTH OF INDIVIDUALS IN PLANT

POPULATIONS: LOCAL DENSITY VARIATION IN A

STRAND POPULATION OF XANTHIUM STRUMARIUM
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We studied the growth of individual Xanthium strumarium plants growing at four naturally occurring local densities on
a beach in Maine: (1) isolated plants, (2) pairs of plants #1 cm apart, (3) four plants within 4 cm of each other, and (4)
discrete dense clumps of 10–39 plants. A combination of nondestructive measurements every 2 wk and parallel calibration
harvests provided very good estimates of the growth in aboveground biomass of over 400 individual plants over 8 wk and
afforded the opportunity to fit explicit growth models to 293 of them. There was large individual variation in growth and
resultant size within the population and within all densities. Local crowding played a role in determining plant size within
the population: there were significant differences in final size between all densities except pairs and quadruples, which were
almost identical. Overall, plants growing at higher densities were more variable in growth and final size than plants growing
at lower densities, but this was due to increased variation among groups (greater variation in local density and/or greater
environmental heterogeneity), not to increased variation within groups. Thus, there was no evidence of size asymmetric
competition in this population. The growth of most plants was close to exponential over the study period, but half the plants
were slightly better fit by a sigmoidal (logistic) model. The proportion of plants better fit by the logistic model increased
with density and with initial plant size. The use of explicit growth models over several growth intervals to describe stand
development can provide more biological content and more statistical power than ‘‘growth-size’’ methods that analyze
growth intervals separately.

Key words: annual plants; Asteraceae; beach community; growth curves; plant competition; size inequality;
Xanthium strumarium.

In plants and other sessile organisms with indetermi-
nate growth, the basic demographic processes, birth and
death, are very closely linked with the process of growth.
For example, the mortality rate is often highest during
periods of rapid growth through the process of self-thin-
ning (Harper, 1977) in which it is the smallest plants that
tend to die (Watkinson, Lonsdale, and Firbank, 1983).
When plants reproduce, size is highly correlated with re-
productive output (Samson and Werk, 1986; Hartnett,
1990; Aarssen and Taylor, 1992). The struggle for exis-
tence among plants is, to a large extent, the struggle to
grow in the face of competition from neighbors. Thus,
the question of how competition alters the growth of
plants is central to understanding the role of competition
among plants in nature. Field removal studies (reviewed
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by Goldberg and Barton, 1992) usually detect competi-
tion, but that is only the first step towards understanding
its role. While numerous studies have attempted to mea-
sure the influence of competition on plant size or growth
over one or several independent intervals, few have at-
tempted to evaluate the influence of competition on in-
dividual plant growth curves (Stoll, Weiner, and Schmid,
1994; Nagashima, Terashima, and Katoh, 1995; Weiner,
1995).

This is, in part, because there is a trade-off in practice
between following growing individuals over time and
making good measures of their size. Demographically
oriented studies (e.g., Sarukhán and Harper, 1973; Mack,
1976; Symonides, 1983a) have followed the fate of in-
dividuals, but, because measurements need to be nonde-
structive and nondisruptive, size has usually been mea-
sured in a very crude way, e.g., number of leaves, size
of the largest leaf, or stem diameter. Such measures allow
us to show whether growth is occurring, and perhaps
whether one plant is growing faster than another, but the
relationships between these crude size measures and more
biologically fundamental aspects of size such as biomass
or reproductive output can be weak and nonlinear. ‘‘De-
mographic growth analysis’’ (McGraw and Garbutt,
1990) can be a valuable tool in studying the growth of
individuals without harvesting them, but strong infer-
ences can be made about biomass or reproductive output
only when these quantities are very highly correlated
with the numbers of the module used in the analysis.
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Harvesting is traditionally the best way to obtain accurate
measures of plant biomass (and therefore energy content),
but the ability to follow individuals over time is lost: a
plant can be harvested only once. Some researchers have
used data from sequential harvests to study the overall
change in size distributions over time (e.g., Ford, 1975),
but only at great cost in statistical power and/or unwar-
ranted assumptions (e.g., size ranks do not change over
time). The ubiquitous high variation among replicates is
especially problematical with sequential harvests. Plant
ecology suffers from the lack of an efficient technology
for measuring plant size nondestructively and nonintru-
sively.

In lieu of such a technology, there is a well-established,
albeit time- and labor-intensive, method for obtaining
good measurements of size for individuals over time. Se-
quential nondestructive measurements on individuals can
be used in parallel with sequential harvests to produce
accurate estimates of individual size over time. By mak-
ing numerous nondestructive, minimally intrusive mea-
surements on individuals in a population, and also fitting
prediction equations to harvests of similar plots, one can
obtain accurate estimates of plant size for individuals in
the repeatedly measured population. Since the relation-
ship between the different aspects of size may change
over ontogeny (Coleman, McConnaughay, and Ackerly,
1994) and may be altered by competition (Weiner and
Thomas, 1992; Nagashima and Terashima, 1995), it is
often necessary to use separate calibration harvests for
different stages of development and/or for different den-
sities.

Using this method, we investigated the influence of
competition on the growth of individual Xanthium stru-
marium plants growing at four different densities under
natural conditions, to address the following questions: (1)
Is the variation in local density observed in the field an
important influence on variation in the growth of X. stru-
marium individuals? (2) If so, what is the influence of
natural variation in density on the growth curves of plants
in the field: (A) Does competition alter the general form
of plants’ growth curves? (B) How does competition alter
the parameters of specific growth models? (3) If com-
petition is not a major cause of size variation in X. stru-
marium populations, what other factors may account for
the variation observed in the field?

MATERIALS AND METHODS

Study site—The study site is a 1.5-km undeveloped barrier beach at
the Bates Morse Mountain Coastal Research Area in Sagadahoc County
in southern Maine (698 49’ W, 438 43’ N), USA. The beach supports a
native plant community dominated by five species: the rhizomatous
perennial grass Ammophila breviligulata, and four nonclonal summer
annuals: Xanthium strumarium, Atriplex patula, Salsola kali, and Cakile
edentula. During the growing season, plants on the beach are subject
to partial and sometimes complete burial by sand. Occasionally more
severe disturbances to the beach profile and associated dunes are caused
by wind and winter storms that shift sand. The presence of endangered
species of nesting birds has led to protection of the beach, so distur-
bance by humans is minor.

Study species—Xanthium strumarium L. (Asteraceae) typically oc-
curs on predominantly bare sand above the high tide mark, but solitary
individuals are occasionally found below this level, and solitary plants

and clusters can occur near and within dense stands of Ammophila brev-
iligulata on the frontal dune. Xanthium strumarium occurs over a wide
range of densities in this community. Solitary individuals and ‘‘pairs’’
(two plants emerging from one double-seeded propagule) are common,
as are discrete clumps of up to 100 individuals surrounded by bare sand.

Seedlings of X. strumarium typically emerge from mid-May through
mid-June; most seedlings appear during a 2-wk period in late May and
early June. During most years, growth is nearly complete by early or
mid-August when flowers appear. Fruits mature through October.

Field methods—We made measurements on 415 individual plants
over 8 wk of growth in 1990, including repeated nondestructive mea-
surements on some plants and sequential harvests of others. The de-
tailed repeated measurements were possible with minimal damage be-
cause X. strumarium is robust, with simple, large, xeromorphic leaves
(Weaver and Lechowicz, 1982). The largest leaves were 16 cm long,
and no plant bore .180 leaves. The five measurement dates spanned
the period of plant growth from the seedling stage (early June) to ;2
wk prior to flowering (which occurred in mid-August).

In late May and early June over 500 X. strumarium seedlings growing
on open sand at the site were labeled individually with numbered plastic
tags that were attached loosely around the base of the stem with thin,
plastic-coated wire. We used four naturally occurring densities repre-
sentative of the range of densities observed in this population: (1) sol-
itary plants separated at least 1 m from other plants (of any species) by
bare sand; (2) pairs of plants with stem bases ,1 cm apart, and sepa-
rated from other plants by at least 1 m; (3) small clusters of four plants
(some of which were created by thinning clusters of five to eight in-
dividuals to four); (4) clusters of 11–39 plants. Interplant distances were
quite small within densities (2)–(4); distance to nearest neighbor was
always ,2 cm, and aboveground parts were almost always in physical
contact. In the larger clusters (4), a few seedlings emerged after the
study began. These were tagged and included in the study for those
analyses not restricted to plants that were measured five times (see
below). There was no evidence of density-dependent mortality in these
populations.

At weekly intervals, every plant was located, and information on
mortality, inundation, and degree of burial by sand was recorded. To
prevent factors other than conspecific density from affecting growth, we
excavated plants and plant parts covered by accreting sand, and cut at
ground level any stems of Ammophila breviligulata that emerged near
study plants. Plants that were not repeatedly measured but were to be
used in sequential harvests were monitored and treated in the same way.
At 2-wk intervals, within a 2–3 d period (5–6 June, 18–19 June, 2–3
July, 16–17 July, and 30 July–1 August), the following measurements
were made on each plant: (1) stem diameter of the first internode (be-
tween cotyledons and first pair of true leaves) of the central stem using
digital calipers; (2) largest diameter of central stem above the cotyle-
dons; (3) height from base of cotyledon to the highest apical meristem
recorded to nearest 0.5 cm; (4) length of each cotyledon, recorded to
nearest 0.5 cm; (5) length (to nearest 0.5 cm) and width at the widest
point (to nearest 0.5 cm) of each leaf .1 cm long; and (6) number,
order (primary, secondary, tertiary),and length of each branch .1 cm
long.

Some plants were not measured at every 2-wk interval because the
management plan for endangered bird populations nesting on the beach
did not always permit access to all individuals. These plants were mea-
sured and monitored again at the next measurement date. Thus, some
plants were not measured on every measurement date. For the analysis
of size distributions on individual dates we used all plants for which
we had four or five measurements (sample sizes in Table 1). For the
fitting of growth curves we used only plants that had been measured
all five times (sample sizes in Table 2).

Sequential harvests—For the first four measurement dates the non-
destructive measures of the repeatedly measured plants were accom-
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TABLE 1. Analysis of variance of estimated log mass on density level
for each measurement date for plants that were measured at least
four of the five times. N 5 414 (week 1), 416 (week 3), 419 (week
5), 313 (week 7), 411 (week 9).

Week Source df MS P

1 density
residual

3
410

0.014
0.108

n.s.

3 density
residual

3
412

0.455
0.056

,0.0001

5 density
residual

3
415

0.545
0.082

0.0002

7 density
residual

3
309

1.941
0.127

,0.0001

9 density
residual

3
407

6.70
0.273

,0.0001

Fig. 1. Relationship between log estimated and log measured plant
mass for X. strumarium at the final measurement (N 5 153).

TABLE 2. Percentage of X. strumarium plants better fit (i.e., higher adjusted r2) by a logistic than by an exponential model for different densities.
The first row is for all plants that were measured five times, the second row includes only those for which the difference in adjusted r2 between
the two models is .1%. Sample sizes are in parentheses.

Group Isolated Pairs Quadruples Clumps x2 P

All plants 36.7 (60) 43.8 (89) 40.8 (71) 69.9 (73) 18.8 0.0003
.1% difference in adjusted r2 59.3 (27) 44.9 (49) 58.9 (39) 76.4 (55) 10.85 0.0126

panied by harvests of nearby X. strumarium plants. The objective of
the sequential measurements was to obtain good prediction equations
for biomass of the repeatedly measured plants. Thus, the harvested
plants were chosen to represent a range of sizes and densities. We mea-
sured these plants in the field, with the same procedures and protocols
used for the repeatedly measured plants. We then harvested the above-
ground parts, which were then washed, dried, and weighed. For the
final measurement, the plants that were harvested for biomass were a
subsample of the repeatedly measured plants. Over the summer, we
harvested a total of 377 plants over a wide range of sizes and densities.

Estimation of biomass of growing plants—For each of the five mea-
surement dates, we examined the relationship between the nondestruc-
tive field measures and dry mass of the harvested plants. To develop
prediction equations, we used stepwise multiple regression of dry mass
on the various nondestructive measurements with appropriate transfor-
mations of the variables for homoscedasticity and normality of the re-
siduals. Only terms that represented a significant (P , 0.05) improve-
ment in the stepwise regression were included in the prediction equa-
tion. We fit and used a different prediction equation for each harvest/
measurement date, except the third and fourth measurements, which
were combined. This was done because available samples sizes were
limited and the data we could obtain showed no evidence of any dif-
ferences in allometric relationships between those two dates. In all
cases, the relationship of several measures to dry mass is quite good
(Fig. 1), and the residuals fit the assumptions of regression very well.
We found no evidence of different relationships for the different den-
sities at each date. The prediction equations used were

Harvest 1: mass 5 255.05 1 9.23 (total cotyledon length) 1 10.05
(total leaf length) 1 10.69 (total leaf width); r2 5 0.94; N 5 84

Harvest 2: log mass 5 2.582 1 1.134 log stem diameter 1 0.131 log
(total cotyledon length) 1 0.334 log (total leaf length) 10.431 (total
leaf width); r2 5 0.93; N 5 87

Harvest 3 and 4 (combined): log mass 5 20.633 1 0.744 log stem
diameter 1 0.864 log (total leaf width); r2 5 0.984; N 5 53

Harvest 5: log mass 5 1.822 1 0.921 log stem diameter 2 0.151 log
(total branch length 1 1) 1 1.198 log (total leaf length); r2 5 0.99; N
5 153 (Fig. 1).

All analyses presented below are on the masses or log masses esti-
mated for the sequentially measured plants.

Statistical methods—Using the method described in Stoll, Weiner,
and Schmid (1994), we fit two growth models,

exponential model Wt 5 W0egt, (1)

where Wt is the mass of a plant at time t, t is time, and W0 is the initial
mass and g is the instantaneous relative growth rate (RGR), and

K
logistic model W 5 (2)t 2gt1 1 ([K/W ] 2 1) e0

with g in this case representing the initial RGR and the additional pa-
rameter K representing the asymptotic mass.

The exponential model was fit using linear regression on the esti-
mated log mass, and the logistic model (also log transformed) was fit
using an iterative, nonlinear model fitting procedure (JMP Statistical
Program, SAS Institute). While the fitting of a model of growth with
two or three parameters to five points would and should arouse suspi-
cion in a single case, this is not a problem but, rather, an advantage
when such fitting is done for many individuals and the parameter esti-
mates analyzed as variables (Meredith and Stehman, 1991; Stoll, Wei-
ner, and Schmid, 1994; Weiner, 1995).

The logistic model could not be fit to all plants. When it could, the
goodness of fit of these two models was compared on the basis of
Akaike’s information measure (Sakamoto, Ishiguro, and Kitagawa,
1986), which allows comparison of models with different numbers of
parameters. For models with normally distributed errors, Akaike’s mea-
sure is equivalent to using the adjusted r2. We analyzed the binary
variable: which of the models fit better (i.e., higher adjusted r2), as well
as the distribution of parameter estimates for both models.
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Fig. 2. Frequency distributions of log estimated plant mass of X. strumarium plants for all densities and measurements. Histograms are based
on 15 intervals from the minimum to the maximum. Arrows along the axes represent the log (mean estimated plant mass) for the last measurement
date. Different shadings represent different clumps for the last measurement date. Results for analysis of variance are in Table 1.

Fig. 3. Change in coefficient of variation of estimated mass over
time for the four densities. Different letters represent significant differ-
ences in CV at the final measurement (P , 0.05; paired bootstrap meth-
od).

RESULTS

Mean performance—Density accounted for a highly
significant proportion of the variance observed in log es-
timated mean plant mass at the final measurement (Table
1; Fig. 2). Post hoc tests showed significant differences
in log estimated mean plant mass at the final measure-
ment between all densities except pairs and quadruples,

which were very similar in mean and distribution (Fig.
2). Plants growing in clumps were, on average, one-quar-
ter the size of isolated plants. There was no significant
difference in estimated mean plant mass among the den-
sities at the first measurement, so differences can be at-
tributed to different growth rates occurring at different
densities over the course of the study.

Size variability—Size variability (as measured by the
coefficient of variation in estimated plant mass) increased
over time at all densities and was higher at higher den-
sities at the last two measurements (Fig. 3). The paired
bootstrap method (Dixon et al., 1987), based on 1000
bootstrapped estimates, showed significant differences in
the CV between individually growing plants and plant
growing clumps, and between pairs and clumps (P ,
0.05 in both cases).

We compared CVs via randomization for given sample
sizes. The mean CV of actual pairs of plants at the final
measurement was 0.404, but the mean CV of randomized
pairs was 0.784, which is very similar to the mean CV
of isolated plants randomly assigned to pairs (0.773).
Thus, inequality among the plants growing in pairs was
due primarily to differences among pairs rather than dif-
ferences within pairs. Similarly, the mean CV of quad-
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Fig. 4. Distribution of relative growth rates (slope of the linear re-
gression of log estimated mass on time) over the entire period of growth
at the four different densities for all plants that were measured five
times. Arrows represent means.

Fig. 5. Growth curves for all plants that were measured five times.
Plants at higher densities and plants that were larger at the first mea-
surement were more likely to show evidence of declining relative
growth rate during growth.

ruples was 0.473, but the mean CV randomized quadru-
ples was 0.900, which is very close to the mean CV of
isolated plants randomly assigned to groups of four
(0.913). The mean CV of the six clumps at the final mea-
surement was 0.861, but the CV was 1.36 when these
plants were randomly assigned to groups of the same size
as the real clumps. The CV of the mean plant mass per
clump (1.160) was higher than the mean CV within
clumps (Fig. 2, final histogram).

Growth curves—When all plants were fit with the ex-
ponential model, the mean estimated relative growth rate
was lower for higher local densities (P , 0.001 for ANO-
VA of RGR by density), and post hoc tests showed sig-
nificant differences in mean RGR between all densities

except pairs and quadruples. Local density also changed
the distribution of RGRs (Fig. 4). The distribution of
RGRs within clumps was skewed, with most plants hav-
ing low RGRs, but with a tail of individuals that had
RGRs almost as high as those at lower densities. The
results are similar if the analysis of RGR is restricted to
those plants that were better fit by the exponential than
by the logistic model.

The growth of most plants fit both the exponential and
the logistic model quite well, and differences in the ad-
justed r2s were very small. Some plants showed no evi-
dence of a decline in RGR over time (Fig. 5), and it was
impossible to fit the logistic model to such individuals or
the fit yielded estimates of asymptotic size that were un-
realistically large. Plants that yielded such large estimates
of asymptotic size in the logistic model always showed
a better fit to the exponential model.

The percentage of plants better fit by the logistic model
was significantly higher for the highest density (Table 2).
The probability of a plant being better fit by a logistic
model also increased with initial size (first measurement).
In a logistic regression analysis, size at first measure and
density both had significant effects on the probability of
a plant being better fit by a logistic vs. an exponential
model (P 5 0.02 and P 5 0.0002, respectively), i.e.,
plants that were larger at the first measurement and plants
that were more crowded were more likely to show evi-
dence of a size asymptote (Fig. 5). Among plants better
fit by the logistic model, those growing at higher densities
showed significantly lower asymptotes (density df 5 3,



November 1998] 1643WEINER ET AL.—LOCAL DENSITY VARIATION IN XANTHIUM

MS 5 9.516, P 5 0.003; residual df 5 137, MS 5 1.96),
but there was no significant influence of density on the
initial RGRs in the logistic model.

DISCUSSION

Competition and individual growth—Competition
among sand beach and dune annuals has been observed
in several studies (Pemadasa and Lovell, 1974; Mack and
Harper, 1977; Watkinson and Harper, 1978; Symonides,
1983a, b; Watkinson, 1990; Rees, Grubb, and Kelly,
1996), although competition in dune communities is
thought to be weak compared to competition in more
nutrient-rich or later successional environments. In these
field populations of X. strumarium, we can reject the null
hypothesis of no competition (Ellison, Dixon, Ngai,
1994) and conclude that naturally occurring variation in
local crowding by conspecifics (siblings in many cases)
has a significant influence on individual growth and re-
sultant size (Table 1). Individuals that have fewer neigh-
bors grow exponentially for longer and are therefore sig-
nificantly larger than individuals with one or more neigh-
bors.

Significant differences in final size were observed be-
tween all densities except plants growing in pairs and
those growing as quadruples. Thus, while mean final size
decreased with increasing local density from none, to one
or three, to more neighbors, there was no evidence that
plants with three near neighbors experienced more com-
petition than those with only one neighbor. This could be
because plants suffer competition primarily from neigh-
bors that are extremely close. Pairs usually arose from
seeds from the same fruit and therefore very close to-
gether. Quadruples were usually from two or three fruits.
Competition between seeds from the same fruit may be
much stronger than usually occurs between seeds from
nearby fruits.

When treated as populations, plants growing at higher
densities were more variable in growth and final size than
plants growing at lower densities (Fig. 3). The increase
in overall inequality at higher densities was primarily due
to differences among groups rather than variation gen-
erated within groups. The fact that the CV of the mean
plant mass per clump (1.160; Fig. 2, final histogram) was
higher than the mean CV within clumps (0.861) is strong
evidence that size inequality at the highest density was
primarily due to inequality among clumps rather than in-
equality within clumps. Thus, we conclude that there is
no evidence of asymmetric competition (Weiner, 1990a)
within this population. Since competitive asymmetry ap-
pears to be driven primarily by shading, we would not
expect competition to be asymmetric in such a high-light,
low-cover, strand community. Rather, the increase in in-
equality observed at higher densities is probably caused
by environmental heterogeneity (Mitchell-Olds, 1987)
and/or variation in local density (Bonan, 1988; Miller and
Weiner, 1989) in this population that contains many dis-
crete clumps. The highest density category includes a
wide range of densities, thus resulting in wide variation
in mean plant size among clumps. Even pairs represent
a range of densities compared to isolated plants, in that
the distance between individuals within a pair varies to
some degree. If the effect of competition decreases steep-

ly with the distance between plants, small differences in
distance within pairs could result in large differences in
mean plant size among pairs.

Modeling individual plant growth—The choice of
growth model has major effects on the results and sub-
sequent interpretation of the data. When we fit the ex-
ponential model to all plants, we observe that crowding
reduces RGR and changes the distribution of RGRs with-
in the population. A description of this population’s de-
velopment based on exponential growth is reasonably
‘‘accurate’’ in the sense that plants fit the exponential
model quite well. However, half the plants were slightly
better fit by the logistic model, and analysis based on the
logistic model leads to a very different picture of popu-
lation development. When we analyzed the logistic model
in those cases in which it fit better than the exponential
model, we see that crowding reduced the asymptotic size
but not the initial RGR (Shinozaki and Kira, 1956). The
conclusion that competition reduced plants’ initial RGRs
is as much a function of the statistical model employed
as of the data themselves. Because many plants were still
growing exponentially by the end of the study (Fig. 5),
it was not possible to fit the logistic model to all plants.
Thus, it was not possible to compare an analysis in which
all plants are modeled exponentially with one in which
all plants are modeled sigmoidally, but such an analysis
offers promise for future studies.

The growth of individual plants is exponential at the
beginning but eventually becomes asymptotic if we
look over the whole life of the plant. There are several
reasons why the RGR of plants decreases over time,
including reduction in resources per unit plant tissue
with increasing size, and increased allocation to struc-
tural and reproductive rather than photosynthetic tis-
sues (Weiner, 1990b). Many of the plants in this study
were still in an exponential growth phase and showed
no evidence of a reduction in RGR over time (Fig. 5).
Local crowding increased the probability that a plant
would show evidence of beginning to level off in size.
The main effect of competition for certain resources
may be to decrease the maximum size that a plant will
achieve, rather than reducing the initial relative growth
rate. Indeed, since the intensity of competition in a
growing cohort of plants increases over time as plants
at a given density get larger, we would not necessarily
expect competition to affect plants’ initial growth. As
Stoll, Weiner, and Schmid (1994) observed in a popu-
lation of Pinus sylvestris, individuals that are larger at
the beginning are also more likely to show evidence of
leveling off by the end, and our results are consistent
with this observation.

Explicit growth curves vs. ‘‘growth-size’’ models—
The basic modeling tool for the description and analysis
of population size development in recent years has been
based on the relationship between the sizes of plants
within a population at some point in time (t) and their
growth over a subsequent interval (t → t 1 x). We refer
to such models as ‘‘growth-size’’ models. Westoby
(1982) called the relationship between size and subse-
quent growth increment (absolute growth rate) the ‘‘dis-
tribution-modifying function’’ (DMF), because the rela-
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tionship describes how the size distribution changes over
the interval. Hara (1984) expanded the DMF approach
into a full diffusion model based on the Kolmogorov for-
ward equation, adding a diffusion equation [‘‘D(t,x)’’] to
the DMF or ‘‘drift’’ equation [‘‘G(t,x)’’]. The practical
value of the diffusion term has yet to be established: very
large sample sizes are required to obtain reasonable es-
timates of D(t,x) functions, and the biological interpre-
tation of the D(t,x) function is still unclear (Hara, 1988).

Growth-size models have proven to be very useful as
analytical tools. For example, Weiner (1990a) argued that
certain types of growth-size relationships are incompati-
ble with the hypothesis of symmetric (‘‘two-sided’’) com-
petition. Thus, predicted types of growth-size relation-
ships can serve as testable hypotheses. In the growth-size
approach each time interval is treated separately: no as-
sumptions are made about the time course of plant
growth beyond the single growth interval analyzed. We
can increase both the biological content and the statistical
power of models of stand development by basing them
on explicit growth equations. First, this would provide a
biologically meaningful connection between the different
growth intervals, rather than looking at each interval in-
dependently. Second, by making reasonable assumptions
about the growth of individual plants over several inter-
vals, we can increase our statistical power enormously. It
follows from basic principles that statistical power in-
creases with the number of assumptions made. Thus,
while inappropriate assumptions are to be avoided, it is
equally true that not making reasonable assumptions is
not taking advantage of all the available information.
Since we know that the growth of plants can be fit to
several general equations (Hunt, 1982), these can provide
powerful tools for the modeling of stand development,
enabling us to apply the knowledge about individual
plant growth we do have in our analyses. Of course, any
tool must be evaluated in the context of the purpose of
the particular study and the type of data available, and
there may be situations in which ‘‘growth-size’’ models
will be more appropriate than growth curve models, e.g.,
when sample sizes are large but size measurements are
very limited (such as stem diameter only) or infrequent.
In many situations, however, the analysis and interpre-
tation of population development in terms of explicit
models of growth offer major statistical and biological
advantages over other approaches.
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