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Abstract.-Discontinuous relationships between variables are common in biological data. Dis- 
continuities can sometimes give the appearance of curvilinearity, which suggests the data should 
be analyzed with nonlinear models. Here we show that often a more meaningful analysis can 
be obtained with censored regression techniques. In a censoring model all points below (or 
above) a certain threshold are observed only by the value of the threshold (e.g., a baseline 
temperature). We illustrate the method with an example from plant reproductive biology: plant 
reproductive mass is never negative but becomes positive only after some "capacity" to flower 
reaches a threshold. The vegetative mass at which the threshold is reached and the relationship 
between reproductive mass and vegetative mass above the threshold are estimated from data. 
Using censored regression with real and simulated data shows that apparent curvilinearity sug- 
gested by models that do not account for censoring can be an artifact. 

Relationships between biological variables are often discontinuous if a large 
range of values is considered. For example, a dependent variable may reach an 
upper (or lower) bound above (or below) certain values of an independent vari- 
able; in such a case the dependent variable appears to be censored, Such relation- 
ships can be analyzed by censored regression models. Biologists have done this 
for survival data when the full life span could not be observed for all individuals 
(Buckley and James 1979; Aitkin and Clayton 1980; Oakes 1986; Petersen 1986, 
Schneider and Weissfeld 1986; Segal 1988). Censored regression models are, how- 
ever, rarely used in cases in which there are biological rather than sampling 
restrictions for a dependent variable (but see Taylor 1973; Wolynetz 1979a, 19796; 
Miller and Halpern 1982). For example, certain characters of organisms only 
develop when an "ability" or "capacity," whose material basis may be unknown 
(internal resources, hormones, morphogens), reaches a certain level (fig. lA, B); 
other characters may reach physical limits (fig. 1C); and many physiological 
processes have "baselines" or maximum rates (fig. ID). Further examples in- 
clude reproductive output (discussed below), canalization of phenotypic charac- 
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CENSORED REGRESSION 

Shoot 
height Adult size 

I_I 
Rosette diameter Initial size 

Plant biomass Metabolic 
[log-scale] - (C) rate (D) 

Plant density [log-scale] Temperature 

FIG.1.-Idealized sketches of some discontinuous relationships in biology. A, Rosette 
plants must reach a certain size before the stem bolts and the height can be observed (cf. 
Werner 1975); B, plants or animals of very small initial size (e.g., seed mass or mass at birth) 
do not have enough starting capital to survive (i.e., to produce positive adult sizes; cf. 
Thomas and Weiner 1989); C, plant size is reduced under intra- or interspecific competition 
(increasing density), but no competition occurs at low density where all plants can reach the 
maximum size determined by genotype and competition-free environment (Harper 1977); D, 
basal metabolic rate of homeothermic animals increases with decreasing ambient tempera- 
ture, but above a certain ambient temperature metabolic rate is constant (cf. West 1972). 

ters, prevalence of disease, and behavioral responses. Here we wish to draw 
attention to statistical methods that have been developed in econometrics for the 
analysis of censored observation (Amemiya 1985). 

We believe that censored regression models can solve many statistical prob- 
lems that have been encountered in the analysis of discontinuous biological rela- 
tionships. These statistical problems may have led to unnecessary revisions of 
biological models. In the case of plant size-density relationships, for example, a 
linear model on the log-log scale often seems to best represent the underlying 
biological processes over a certain range of densities (fig. 1C; see extensive dis- 
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cussion of this subject and references in Harper 1977). However, the linear model 
is now rarely being used because biologically plausible models for curvilinear 
size-density relationships have been developed (Watkinson 1980, 1986; Vander- 
meer 1984; Pacala and Silander 1985). In data sets of moderate size a curvilinear 
model can cover up an existing discontinuity. Below we use another example, in 
which linear and curvilinear relationships have been proposed, to demonstrate 
how the censored regression approach can alter our interpretation of data. The 
example we have chosen is the size dependence of reproductive output in plants. 

A N  EXAMPLE: PLANT REPRODUCTIVE MASS 

Although reproductive allocation in plants has traditionally been defined in 
terms of the proportion of a plant's total biomass that is in reproductive tissues 
(see, e.g., Bazzaz and Reekie 1985), the observation that reproductive allocation 
is often size-dependent has led researchers to study directly the relationship be- 
tween reproductive output and plant size (Samson and Werk 1986; Weiner 1988; 
Klinkhamer et al. 1990, 1992). To explain changes in reproductive allocation in 
response to competition, Weiner (1988) proposed a simple model in which the 
relationship between reproductive mass ( y )  and vegetative mass (x) is linear and 
has a positive x-intercept (i.e., there is a minimum size for reproduction). Evi- 
dence in support of this model has been found in four species of clonal composites 
(Hartnett 1990) and several species of agricultural weeds (Thompson et al. 1991). 

Weiner's (1988) model is based on an analogy between a biological plant that 
produces inflorescences, fruits, and seeds and an industrial plant (factory) that 
produces goods. The model makes the following predictions about size-dependent 
reproductive output in plants. First, significant capital investment is required 
before there can be any sexual reproduction. Therefore, reproductive mass must 
be zero for very small plants. Second, as capital investment increases with plant 
size, the capacity to reproduce increases and reaches a threshold at a certain 
size. Finally, above this minimum size for reproduction, a constant proportion 
of additional capital can be directly allocated to reproduction, which will lead to 
a linear relationship between reproductive mass and vegetative mass. This model 
has been analyzed by normal regression analysis (Samson and Werk 1986; Weiner 
1988; Hartnett 1990; Thompson et al. 1991). Curvilinear relationships between 
size and reproductive output have also been proposed (Reiss 1989; Klinkhamer 
et al. 1992). 

We use one of seven data sets on size-dependent reproduction in the clonal 
plant Solidago altissima L. (tall goldenrod) to evaluate these models under the 
assumption of a biological censoring mechanism. Figure 2 shows a scatter plot 
of the reproductive mass r (inflorescences) against the vegetative mass v (stem 
+ leaves) for the 2,545 individually grown shoots. Those with symbol Y belong 
to the data set arbitrarily chosen for the analysis. It can be seen that the data are 
effectively split into two parts: censored data points for which only v could be 
observed and r is zero, and uncensored data points for which both r and v could 
be observed. If we imagine that the plants for which we set r = 0 in fact would 
have a "reproductive debt" that must be paid back by capital investment, we 
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FIG.2.-Scatter plot of plant reproductive vs. vegetative mass in Solidago altissinln (seven 
data sets, total tz = 2,545). The histogram shows the number of plants with zero reproductive 
mass (688 points clustered on the X-axis): only the points marked with large Y's are analyzed 
in this article (see Dolt 1991 and Schmid and Weiner 1993 for descriptions of the experi- 
ments). 

could try to interpret them as plants with a "negative reproductive mass." This 
is what the censored regression analysis does. 

STATISTICAL MODELS 

We use uppercase letters for random variables, lowercase letters for fixed 
data or observed random variables, Greek letters for parameters, and a circumflex 
(^)for estimates. Before implementing the censored regression model, we briefly 
review the statistical methods that have previously been used for the analysis of 
size-dependent reproduction in plants. We begin with the linear regression model 
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(Samson and Werk 1986): 

r i = a +  p e v i + u i =  p e ( v i - a 1 ) + u i ,  i =  1, . . . , n .  (1) 

Here ri and vi represent reproductive and vegetative masses of the random vari- 
able R and the independent variable v, respectively, a is the intercept on the 
Y-axis, p is the slope parameter, a' = - a l p  is the intercept on the X-axis (thresh- 
old), and the ui are the normally distributed errors. Because the zero values of 
R (censored dependent observations) violate the assumption of a regression 
model with normally distributed errors, we may simply choose to exclude zeros 
from the analysis (Weiner 1988; Schmid and Weiner 1993). However, such an 
exclusion reduces the amount of information in the data. It can be shown analyti- 
cally (Amemiya 1985) or by simulation (table 1) that this leads to a negative bias 
in the estimate (6)of p.  

If we find a significant lack of fit for model (I) using a general linear test (see, 
e.g., Neter and Wassermann 1974), we may try an allometric model (Klinkhamer 
et al. 1992): 

or, reparameterized, 

yi = p t  (v i  - a')?'+ uj ,  i = 1, . , . ,n .  (2b) 

If the allometric exponent y (or y') is smaller than one, increases in vegetative 
mass produce diminishing increases in reproductive mass (decreasing returns to 
scale in the economic analogy); if y > 1 (or y '  > I), increases in vegetative mass 
produce accelerating increases in reproductive mass (increasing returns to scale). 
Because a or  a' may differ from zero, model (2) cannot in general be fitted by 
linear regression of log(ri) on log(vi) (cf. Klinkhamer et al. 1990). If the model 
with the intercept a '  on the X-axis is chosen, we need the restriction v i  > 6'. (In 
the allometric model a' cannot, of course, be calculated as A simple ~ a l ~ . )  
remedy would be to exclude zeros from the analysis. In this case the estimate fi 
has a strong negative bias, and the estimate .j,has a strong positive bias (see table 
1). As a consequence, a true allometric relationship with y < 1 will too often 
appear to be a simple linear relationship, whereas a true linear relationship with 
y = 1 will too often appear to be an allometric relationship with an exponent 
greater than one. 

The observations with R = 0 represent the censored data points in the statisti- 
cal analysis. Obviously, these data points contain valuable information about the 
reproductive behavior of plants. It may be argued that the minimum size for 
reproduction should be defined as the vegetative mass 0, at which 50% of all 
individuals in a population flower, irrespective of the reproductive mass of those 
that do flower (cf. Werner 1975; Gross 1981; Meagher and Antonovics 1982; 
Primack and Hall 1990). The parameter 0 can be estimated by logistic regression 
of W (the binary random variable for censoring; see below) on v or, preferably, 
by probit analysis (Finney 1971; McCullagh and Nelder 1989): 

pi = @[a + p . v i ]  + u i =  @ [ p . ( v i  - 0)] + ui, i =  1 , .  . . , n ,  (3) 



TABLE 1 

PARAMETERESTIMATESFOR THE RELATIONSHIP PLANT MASS(R) A N D  VEGETATIVE SIMULATEDBETWEEN THEORETICAL REPRODUCTIVE MASS (v) IN DATA SETS, 
CALCULATED OR CENSORED REGRESSION MODELSFROM ORDINARY LINEAR A N D  ALLOMETRIC 

SIMULATED Ordinary Ordinary CensoredRELATIONSHIP* Censored 

R = -4 + .4 . vl ' + U (31-49 censored) .3946 2 .0004 ,3999 t ,0004 1.075 2 ,004 ,997 2 .003 
R = - 16 + .8 . v'-' + U (75-85 censored) .7964 2 ,0004 .7999 -C .0004 1.032 i ,003 .999 t ,002 
R = -3  + .8 . v 8 + U (15-29 censored) . . .  . . .  367  t .004 .797 t .003 
R = - 10 + 1.4 . v.8 + U (40-53 censored) . . . .841 i ,003 ,799 2 ,002. . .  

R = 4 + .2 . v12 + U (38-57 censored) . . . 1.267 + .003 1.197 t ,003. . .  
R = - 19 + .4 . vl-' + U (93-104 censored) . . . 1.227 i ,003 1.198 i .003. . . 

NOTE.-Six parameter combinations that gave curves that might have been observed in real data are presented; 400 simulations were run for each 
parameter combination; values for v are designed as 0.125, 0.25, 0.375, 0.5, . . . . 50; U was drawn from random normal numbers with mean zero and 
variance three; all simulated R values that were not positive were set to zero (i.e., censored) before analyses began (the range of the number of censored 
data points obtained in the simulations IS given in parentheses). Note that all estimates from ordinary analyses deviate by more than 10-20 S E  from 
the true parameters, whereas none of the estimates from censored analyses deviate by more than 1 SE from the true parameters. 

" Negative r, set to zero. 
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where p i is the probability for plant i with vegetative mass v i  to reproduce, @ is 
the distribution function of the standard normal variable, 0 = -alp, and u i  
is the binomially distributed error. Here we consider vegetative mass v an inde- 
pendent explanatory variable, although it might be more appropriate to treat it 
also as a random variable V measured with errors (compare The "Errors-in- 
Variables" Problem section below). 

Probit model (3) can be combined with model (I) or (2) to use all the information 
in the data for estimating the minimum size for reproduction and the slope of the 
relationship between reproductive and vegetative mass. This leads to censored 
regression models referred to as Tobit models in econometrics (Amemiya 1985). 
We imagine that there exists a normally distributed latent random variable R Xfor 
which no values can be observed at or below zero. In the example the unobserved 
variable R X  may be viewed as a latent reproductive capacity defined as gross 
reproductive mass minus gross reproductive mass at the minimum size. The no- 
tion of gross reproductive mass implies that even in a plant too sma!l to reproduce 
a certain amount of its vegetative mass can be viewed as capital invested for 
reproduction. Only when this capital investment is greater than some threshold, 
which occurs in plants above the minimum size, is actual reproduction observed. 
In statistical terms, whenever the dependent latent variable RF is positive, then 
it is equal to the ("net") reproductive mass r;. If the latent variable RF is negative, 
then the reproductive mass ri equals zero: 

r i = R ,  if RT > 0 (uncensored), (4) 

ri = 0 if R,? 5 0 (censored) . 

If we define W as the random variable indicating censoring (wi = 1 for uncensored 
and w ;= 0 for censored data points), then the likelihood function of the censored 
regression model is 

where + is the density function of the standard normal variable and u = 

As in the previous models, the parameters a, p, and u2 can be estimated by 
maximizing the logarithm of the likelihood function. However, in contrast to the 
previous models or regression models with exponential distributions and right- 
censoring commonly used in survival analysis, the log-likelihood function of this 
model has no simple analytic form and therefore must be maximized numerically 
(Amemiya 1985; cf. Aitkin et al. 1989). This calculation can be done iteratively 
using the so-called expectation maximization (EM) algorithm (Dempster et al. 
1977). The EM algorithm for censored regression uses the mean and the variance 
of the censored normal distribution: 
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where h(x) is the function +(x)/[l - @(x)] and ti= & + . v,. Then 

The censored values of the dependent variable are replaced by the conditional 
expectations given the observed data and current estimates (E step). New param- 
eter estimates are obtained by maximizing the log-likelihood for the "corrected" 
data using the ordinary least-squares method, and the new variance is calculated 
(M step): 

where the second summation is only over the originally censored values. The E 
and M steps are alternated until convergence. The solution converges rapidly 
because with every step the log-likelihood is increased, or at least not decreased. 
It has been shown that only one solution exists (Amemiya 1985). Only approxima- 
tive standard errors of estimates are available when the likelihood is maximized 
with the EM algorithm or other classical methods. We have also worked out a 
Bayesian approach using the Gibbs sampler (Gelfand and Smith 1990) to obtain 
more reliable standard errors (Polasek and Krause 1992). 

So far we have introduced the censored linear regression model (eq. [4]) based 
on the normal regression model (eq. [I]). A straightforward extension is to replace 
the linear relationship between R and v by a nonlinear one such as the allometric 
model (eq. [2]). We refer to this as the censored allometric model (eq. [5]): 

r ,  = R,  if R,'"> 0 (uncensored) , (5) 

ri = 0 if R,'" 5 O (censored) ; 

with likelihood function 

, p, , ) = i - [ ( a+ p )  /  u  l  { I  r - a - P . v ~ ) ~ ~ l ) " ' l .  
I 

It should be noted that large sample sizes may be required to reach convergence 
with commonly used fitting algorithms. For example, the results for the nonlinear 
relationships presented in table 1 could not be produced with simulated samples 
of only 100 instead of 400 points because there often exist various, equally well- 
fitting solutions. A general discussion of this issue, in the context of allometric 
models without censoring, is given by Klinkhamer et al. (1992). 

All the models discussed so far assume that reproductive mass R is the depen- 
dent random variable and vegetative mass v is an independent explanatory vari- 
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able (fixed in repeated samples). However, Weiner (1988) proposed a biological 
model in which the functional relationship between reproductive and vegetative 
mass is one between two random variables R and V, each with underlying error, 
due to imprecise measurement or unknown influences of unmeasured explanatory 
variables (Kendall 1980). Such situations are frequently encountered in biology 
(see, e.g., LaBarbera 1989). A functional relationship in a bivariate distribution 
(R, V) such as R = a + p . V leads to the statistical model of a structural 
relationship 

if the observed variables ri = E(R) + u iand vi  = E(V) + d i  are both subject to 
normal error variation, that is, u,- N(0, uf,) and d i  - N(0, a:). This is called an 
errors-in-variables model. For known ratios of the error variances (i.e., X = 

u ~ l u ~ ) ,classical statistical methods for estimating a and P for a linear model (eq. 
[I]) are available (see, e.g., Kendall and Stuart 1973) and can be generalized for 
nonlinear model (2). Based on Lindley and El-Sayyad, Leamer (1978) gives a 
simple approximative formula for the estimate P (and its variance) in the linear 
model (eq. [6]): since cov(R, V) is positive, we take the positive solution of the 
quadratic equation p2 + T + p - X = 0, 

where 7 = (X + var[V] - var[R])/cov(V, R). However, the approximative method 
does not yield a standard error for the estimate of the intercept a.  Three special 
cases follow from the errors-in-variables model (eq. [6]): the direct regression 
model (eq. [I]) for X -+ m, the major axis or orthogonal regression model for X 
= 1, and the indirect or reverse regression model for X = 0: vi  = a' + l i p  . ri 
+ ul. We are working on extensions of censored regression models (4) and (5) 
to errors-in-variables models using the Gibbs sampler (Gelfand-and Smith 1990; 
Polasek and Krause 1994). A classical solution to the errors-in-variables problem 
has recently become available for censored linear model (4) within the MECOSA 
program (Schepers and Arminger 1992). 

IMPLEMENTATION OF THE CENSORED REGRESSION MODEL AND COMPARISON WITH 

RESULTS OF OTHER MODELS 

Models (1)-(5) can be conveniently implemented with general statistical soft- 
ware such as GENSTAT (Payne et al. 1987), GLIM (Payne 1987), or S-plus 
(Becker et al. 1988). A general outline for implementation of the EM algorithm 
is presented in the Appendix. As our example, we use a data set of 433 plants 
(points marked by Y in fig. 2) that were grown in an experimental garden of the 
University of Basel, Switzerland. A positive reproductive mass could be observed 
for 310 plants, because 123 individuals had not reached reproductive maturity 
and their reproductive mass was therefore zero (censored observations). The 
estimates of statistical models (1)-(5) are shown in table 2, and the model fits are 
compared in figure 3. 
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TABLE 2 

P A R A ~ ~ E T E RESTIMATESFOR THE RELATIOMHIP AND VEGETATIVEBETWEEh REPRODUCTIVE MASS (g) IN 

SOLIDAGOALTISSIMA 

x-Intercept 

Model" y-Intercept a 
Proportionality 
Factor (slope) P 

Minimum 
Size a' 

Allometric 
Exponent y 

Linear regression (1) -3.172 ,5068 6.259 (1.000) 
Allometric model (2): 

with intercept a (2a) 1.782 
with intercept a' (2b) 1.132 

Probit model (3) i  ( - 1.198) 
Censored linear regression (4) -7.110 
Censored allometric model (5) - 7.065 

~ ~~ 

NOTE.-The data set includes all points marked by Y's in fig. 2 and redrawn in fig. 3. Estimates 
are calculated according to the statistical models presented. Except for the allometric model, values 
in the column "x-Intercept" are negative quotients of the preceding two columns. 

" Numbers refer to those used in the text. 

i Not estimable because the fitted curve does not cross the X-axis. 

$ Parameters are for probit-transformed data; the x-intercept therefore corresponds to the vegeta- 


tive mass, at which the probability of reproduction reaches 50% (see text). 

We see that models (1) and (2), which do not use the information on the proba- 
bility of reproduction contained in the censored data points, yield considerably 
lower estimates of minimum size for reproduction and of reproductive allocation 
above the minimum size than do models (3)-(5). The problem is particularly 
severe in the allometric model, which fits a curve across the cloud of points above 
the X-axis without touching it. Using reparameterization (2b) of this model with 
a' as the intercept on the X-axis still does not produce a positive estimate for 
minimum size for reproduction (table 2). It could be argued that the problem 
might have been less severe if the censored data points had been included in the 
analysis as ordinary zeros. While this would have forced the allometric curve 
down to the X-axis very close to the origin of the scatter plot, it would have 
violated the assumption of homoscedasticity and normal distribution of residuals. 
The results for the simulated data show that, if a data-generating process is linear 
but includes a censoring mechanism, the scatter of uncensored points may appear 
curvilinear. It is remarkable that, if censored allometric model (5) is fitted to the 
data set of the example, any indication of curvature in the relationship between 
reproductive and vegetative mass disappears. In fact, the lines for models (4) and 
(5) are practically identical, which supports Weiner's (1988) simple biological 
model. 

CONCLUSION 

Statisticians have come to appreciate that the "world is full of censored data 
problems" (A. F. M. Smith, personal communication). Our goal in this article is 
to demonstrate with a specific example how censored regression models may be 
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Vegetative mass (g) 

FIG.3.-The relationship between plant reproductive and vegetative mass in Solidago 
c~lrissit?la(the data set includes all points marked by large Y's in fig. 2) .  The fitted values 
are calculated according to the following statistical models: (1) linear regression, (2) allome- 
tric, (4) censored linear regression, and (5) censored allometric; the probit model (3) cannot 
be shown on these axes. 

used and how such models modify the interpretation of biological data. Biologists 
tend to use data transformations or curvilinear models to avoid truncated vari- 
ables or discontinous relationships. However, there are clearly cases in which 
these approaches do not reflect the underlying biological mechanisms. For exam- 
ple, if a random variable has a normal distribution and a substantial proportion 
of this normal distribution extends beyond a permissible bound, then it is likely 
that for some units in a sample the values of the variables are censored. Censored 
regression models can deal with this situation and use all the information con- 
tained in the data. We therefore believe that they provide a substantial improve- 
ment compared with other estimation procedures. They simplify discontinuous 
relationships and facilitate their interpretation by introducing latent variables. 
Fortunately, censored regression models are not difficult to implement with cur- 
rently available statistical software (see Appendix). 
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APPENDIX 

The following is a brief recipe for programming the censored regression model using the 
EM algorithm: 

1. Define the vectors 	X and Y of length N for the independent and the dependent 
variable (assign the value of the bound, e.g., zero. where Y is not observed). 

2. Define a vector W and let W = 1 if Y is observed and W = 0 if Y is not observed. 
3. Fit the linear regression Y 	= rr + b . X (by least-squares method) only using the 

units where Y is observed. 
4. Define variables A, B, and S and assign to them the initial parameter estimates of 

step 3 (S is the square root of the residual mean square). 
5.  	Define a vector FV, where for all units the fitted values are calculated. 
6. Define a vector Z with standardized fitted values Z = FVIS. 
7. Define a vector FZ, containing the values of the standard normal cumulative distribu- 

tion function @ (normal probability integral) for each value in Z (e.g., FZ = normal 
[Z]  in statistical computer programs). 

8. Define 	a vector PZ and let PZ = 0.3989 . exp(-[Z . 2/21), the normal density 
values of Z. 

9. Define a vector HZ and let HZ 	= S . PZl(1 - FZ); if division by zero occurs. then 
set the value in HZ to zero. 

10. Define a vector NY and NY = W . Y + (1 - W) . (FV - HZ). 
11. Define a vector V l  and let V l  = (1 - W )  . (S . S + FV . HZ - H Z .  HZ). 
12. Fit the linear regression NY = a + b . X (by least-squares method) using all units. 
13. Compare the new parameter estimates with the old ones in 	A,  B; if the absolute 

difference is larger than some tolerance values (e.g., 0.01%), assign the new parame- 
ter to the variables A, B; otherwise convergence is reached. 

14. Calculate for all units the new fitted values and assign these to FV. 
15. Define a vector V2 and let V2 = (NY - FV) . (NY - FV). 
16. Define a variable S S  and assign to it the sum of all values in V l  and V2 divided by 

the number of units (N). 
17. Replace the old value in 	S by the square root of the value in SS if this value is 

greater than zero. 
18. Repeat steps 6-17 until convergence is reached at step 13. 

The above procedure yields unbiased estimates of the intercept (variable A) and slope 
(variable B)  under the assumptions of the censored linear regression model (4). To  fit the 
censored allometric model ( S ) ,  steps 3, 4. 12, and 13 have to be modified for a nonlinear 
estimation procedure. The nonlinear fits in steps 3 and 12 have to be done iteratively; 
algorithms are usually available in statistical software packages. Note that convergence 
may be difficult to obtain if steps 6-17 are iterated in the censored allometric model with 
small to  medium-sized samples (e.g., N < 200; see text). 
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