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Abstract

Aims

We present an improved model for the growth of individuals in plant

populations experiencing competition.

Methods

Individuals grow sigmoidally according to the Birch model, which is

similar to the more commonly used Richards model, but has the ad-

vantage that initial plant growth is always exponential. The individual

plant growth models are coupled so that there is a maximum total bio-

mass for the population. The effects of size-asymmetric competition are

modeled with a parameter that reflects the size advantage that larger

individual have over smaller individuals. We fit the model to data on

individual growth in crowded populations of Chenopodium album.

Important Findings

When individual plant growth curves were not coupled, there

was a negative or no correlation between initial growth rate

and final size, suggesting that competitive interactions were

more important in determining final plant size than were plants’

initial growth rates. The coupled growth equations fit the data

better than individual, uncoupled growth models, even though

the number of estimated parameters in the coupled competitive

growth model was far fewer, indicating the importance of mod-

eling competition and the degree of size-asymmetric growth ex-

plicitly. A quantitative understanding of stand development in

terms of the growth of individuals, as altered by competition,

is within reach.
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Introduction

One of the goals of modern population ecology is to under-

stand population phenomena in terms of the behavior of indi-

viduals. The development of a stand of plants results from the

growth of individuals, as altered by interactions among these

individuals. We know that plant growth is sigmoidal (Hunt

1982; Vanclay 1994), and several sigmoidal growth models

with biologically interpretable parameters have been proposed

to describe the growth of individual plants, such as the logistic

and Gompertz models. In most sigmoid growth models, initial

growth is exponential, and a negative term reduces the relative

growth rate as size increases, resulting in an asymptotic max-

imum size (Zeide 1993). The main difference among different

sigmoid growthmodels is the inflection point, the size at which

the plant experiences its maximum absolute growth rate

(Seber and Wild 1989). In the Richards model, this inflection

point is not fixed but modeled by an additional parameter

(Richards 1959). Thismakes the Richards growthmodel highly

flexible and inclusive of most other sigmoid growth models.

The Richards growth model generally fits plant growth data

well and has been widely used in plant ecology and forestry.

Estimating the inflection point as a free parameter seems bio-

logically reasonable since there is no general theory that pre-

dicts at what growth stage plants experience their maximum

growth rate, and the inflection point has been shown to de-

pend on density (Damgaard et al. 2002). One biologically un-

desirable feature of the Richards growth model is that when

maximum growth rate is obtained early in plant growth, i.e.

the growth curve has a low inflection point, initial growth

is not exponential (Birch 1999). To address this problem, Birch

(1999) proposed a growthmodel that has both initial exponen-

tial growth and an inflection point parameter. The degree of

mathematical flexibility of the Birch growth model is compa-

rable to that of the Richards model and both models have the

same number of parameters, so it is expected that the Birch

growth model will fit plant growth data as well as the Richards

growthmodel. Furthermore, there are some problems with es-

timating the parameter estimation in the Richards growth

model (Birch 1999; Ratkowsky 1983; Thornley, 2000; Zeide
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1993), but since the Birch model does not include a power

function of the current size relative to the maximum size, it

is expected to have better estimation properties than the

Richards model (Birch 1999).

In a previous study (Damgaard et al. 2002), we used the

Richards growthmodel to analyze competition among individ-

ual plants by (i) coupling individual growth models such that

the saturation term is based on the cumulative size of the

whole population and (ii) including effects of size-asymmetric

competition (Weiner 1990). Here we generalize the Birch

growthmodel in a similar way and take advantage of the direct

estimation of the initial growth rate in the Birch growthmodel.

Furthermore, genetic differences inmicrohabitat and variation

in local competition may cause variation in the shape of indi-

vidual growth curves. Accounting for such variation among

individuals is important to reduce biased and autocorrelated

residuals, which may influence inferences made concerning

the parameters of interest (Cam et al. 2002).

There is increasing interest in including the variation among

individuals in the modeling of population growth with hierar-

chical models, in which some parameters are estimated at the

level of the population, whereas other parameters are assumed

to vary among individuals according to a specific distribution

(e.g. a normal distribution), where the mean and the variance

of the distribution can be estimated (Cam et al., 2002; Clark et al.,

2004; Fox et al. 2001; Schneider et al., 2006). In this study, we

use a hierarchical populationmodel, but instead of only estimat-

ing the summary statistics of some assumed distribution for

parameters, all the individual growth parameters will be esti-

mated for each individual, as suggested by Weiner et al.

(1998). The estimates of the individual growth parameters will

enable us to test hypotheses concerning the shape of the growth

curves of plants at different positions within the size hierarchy.

For example, is the fate of the plants that end up being large

determined early on by factors of a non-competitive nature,

e.g. early germination or a favorable microenvironment, or is

an individual’s position in the size hierarchy determined later

on when the plants start to compete with each other? Using

the Birch growth model, these two hypotheses can be tested

by examining the estimates of the initial relative growth rate

and the inflection point of the individual plants. Under the first

hypothesis, it is expected that the plants that end up being the

dominant ones has a relatively high initial relative growth rate,

whereas under the second hypothesis, the dominant plants will

have a relatively large inflection point.

Materials and Methods
Growth model

Birch (1999) proposed the following growth model:

dvðsÞ
dt

= rvðsÞ w � vðsÞ
w � vðsÞ + cvðsÞ; v>0; r>0; w>0; c>0; ð1Þ

where v(s) is the plant size at time s, r is the initial relative

growth rate, w is the final plant size when growth stops and

c is a positive parameter that determine the inflection point.

The Birch growth model is equivalent to the logistic equation

for c = 1 and to exponential growth for c = 0. The maximum

growth rate is rw=ð
ffiffi
c

p
+1Þ2 when the plants have the size

w=ð
ffiffi
c

p
+1Þ When c<1, the maximum growth rate occurs at

v>w=2; when c>1, the maximum growth rate occurs at v<w=2.

The Birch growth model may adequately describe the

growth of a single plant or plant growth in a monoculture

of identical plants. However, plants in a population are never

identical. There may be variation in the time of germination,

local neighbor conditions and microenvironment, resulting in

size variation. If plant growth is limited by a resource that may

be monopolized, e.g. light, then size-asymmetric competition

may occur and larger plants will grow faster than smaller

plants resulting in size-asymmetric growth. Size-asymmetric

growth can be included by modeling individual plant growth

as proportional to a power function of size (Damgaard 1999;

Damgaard et al. 2002; Schwinning and Fox 1995; Wyszomirski

et al. 1999):

f ðvðsÞ; aÞ= ðvðsÞ +1Þa � 1; ð2Þ

where the relationship between plant size and growth rate is

expressed with a size-asymmetry coefficient, a, which meas-

ures the degree of curvature of the growth-size relationship

within the population over the entire growth curve. The

choice of a power function of plant size is somewhat arbitrary

but may bemotivated by the favorable scaling properties of the

power function. If a < 1, the growth rate is less than propor-

tional to the size of the plant. If a = 1 the growth rate is pro-

portional to the size of the plant, and a > 1 means that the

growth rate is more than proportional to plant size within

the population (Schwinning and Weiner 1998; Weiner and

Damgaard 2006).

In order to take the effect of plant size variation on the

growth of individual plants into account, an individual-based

Birch growth model may be formulated by generalizing equa-

tion (1) with respect to size-asymmetric growth equation (2).

Assume a monoculture of n competitively interacting plants of

variable size, then the growth of plant i at time t may be

expressed by n coupled differential equations (here described

by a single equation for plant i):

dviðsÞ
ds

=
riðvðsÞ+1Þa � 1

a

nw � +n

k=1
vkðsÞ

nw � ð1 � ciÞ+n

k=1
vkðsÞ

v>0;

a 6¼ 0; ri>0; w>0; ci>0;

ð3Þ

where vi(s) is the size of plant i at time s. In order to allow for

individual growth curves, the two parameters that determine

the initial relative growth rate, ri, and the shape of the growth

curve, ci, were allowed to vary among plants, whereas the

other two parameters, a, the size-asymmetry coefficient and

the total biomass (nw, where n is the number of surviving indi-

viduals andw is the average plant size at the end of the growing

season)were assumed to be fixed at the level of the population.

Thus, the growth of each plant depends both on its own size
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and the total size of all the plants in the population. Larger

plants grow more, and growth is reduced by large total popu-

lation biomass. When fitting the model, the biomass of dead

plants was set to zero. Consequently, the biomass of dead

plants is available for the continuing growth of living plants.

Similarly to the Birch growth model, the initial relative

growth rate of plant i in the individual model (equation 3)

is equal to ri at the limit when all n plants are small, i.e.

lim"vk/0
dviðsÞ
ds

1
viðsÞ=ri:

At the limit, when a = 0, model (equation 3) is not defined

but the growth curve is continuous in a = 0 with

lima/0
riðvðsÞ+1Þa�1

a
= rilogðvðsÞ+1Þ:

The size where the plant i experience the maximum growth

rate is the solution to vi$ðsÞ=0, which may be solved numer-

ically in the simplifying case when w=1; vi=p and+vk � np,

where p is the size relative to w.

Growth data

Chenopodium album L. (Chenopodiaceae) is a broad-leaved sum-

mer annual weed that often colonizes open fertilized habitats

(Grime et al. 1989). Growth of individuals in C. album popula-

tions at three densities was followed through the growing

season. On 8 June 1990, the seeds, which had been collected

from a natural population in a suburb of Tokyo in the previous

year, were sown in three 1 3 1 m plots in the Botanical

Gardens, Faculty of Science, University of Tokyo (139� 45’ E,
35� 43’ N). Emergence was first observed on 13 June. The

seedlings were thinned to one plant per sub-plot of 5 3 5 cm,

which were used to establish populations at two plant

densities, 400 plants m�2 (36 plants in 30 3 30 cm) and

800 plants m�2 (72 plants in 30 3 30 cm) on 28 June. Height

and stem diameter of plants in the central area of the plots

were measured non-destructively at intervals of 1–4 weeks

until the end of the growing season. Height was measured

from the soil surface to the terminal shoot apex, and diameter

was measured just above the cotyledons. No fertilizer was ap-

plied because the fertility level seemed to be sufficient due to

high organicmatter from previous vegetation. The populations

were watered almost daily throughout the experiments. The

spatial distribution of the plants was not recorded. The individ-

ual plant biomass was estimated as height 3 diameter2.

The biomass of dead plants was set to zero. For a complete de-

scription of the experimental methods, see Nagashima et al.

(1995).

Parameter estimation

During the estimation procedure, the parameters ri,w and ci, all

of which were assumed to be non-negative, were transformed

to Exp(ri), Exp(w), Exp(ci), but all results are reported after pa-

rameter values have been transformed back. In order to min-

imize autocorrelation among the residual variation, the

growth model (equation 3) was fitted to the observed growth

increments in plant size (Seber and Wild 1989). The expected

sizes of the plants at time t were calculated using the observed

plant sizes at time t�1 and a specific parameterization of the

growth model and compared to the observed plant sizes at

time t:

ViðtjÞ=
Z tj

tj�1

dV iðs; �Vðtj� 1Þ; a;w; ri; ciÞ
ds

ds+ eij;

i=1; 2; . . . ; n; j=2; 3; . . . ;m;

ð4Þ

wherem is the number of observed changes in plant size, ViðtjÞ
is the observed plant size at time tj; dViðs; �V ðtj�1Þ; a;w; ri; ciÞ

�
ds

is the expected plant growth of plant i at time s calculated from

(equation 3) using the NDSolve routine of Mathematica

(Wolfram 2003) and where �Vðtj�1Þ is a vector of the observed

plant sizes at time tj�1. The residual error was assumed to

increase proportionally with expected plant size and the time

period of growth, i.e. ei j;normal ð0; ðrViðtjÞ ðtj � tj�1Þ
�2�

and

the likelihood function of the stochastic model (equation 4) is

L ¼
Ym
j¼2

Yn
i¼1

1ffiffiffiffiffiffi
2p

p
ðtj � tj�1ÞrXi j

exp � ðYi j � Xi jÞ2

2 ðtj � tj�1Þ2 r2 X2
i j

 !
;

ð5Þ

where Yi j is the observed plant size and Xi j is the expected

plant size as calculated by (equation 4).

The joint Bayesian posterior distribution of the parameters

were simulated by an MCMC approach using the Metropolis

Hastings algorithm, assuming uniform improper prior distribu-

tions of the location parameters and the square root of the in-

verse gamma distribution as the prior distribution of r (Carlin

and Louis 1996). The burn-in period was relatively long and

the first 35 000 out of 100 000 simulations were discarded.

The marginal posterior distribution of each parameter and

the corresponding 95% credibility interval was constructed

from the MCMC run.

We investigated the fitting properties of the growthmodel in

the case where the model was parameterized with the maxi-

mum likelihood estimates of the parameters. The likelihood

functions were maximized using the numerical NMaximize

routine of Mathematica (Wolfram 2003). We checked the

fit of the growth model by plotting the Pearson residuals

ðYij � XijÞ
�
ððtj � tj�1ÞrXijÞ and with the Pearson v2 goodness-

of-fit statistic. We looked for autocorrelation among the Pear-

son residuals by calculating the Durbin–Watson statistic. We

investigated the biological significance of among-plant vari-

ability in growth curves parameters by analyzing relationships

between parameter estimates for individual plants and their

observed final mass.

Results

The growthmodel (equation 4) fitted the C. album growth data

well. A visual inspection of the Pearson residuals of the max-

imum likelihood estimates demonstrated that the residual var-

iation was homogenous among individual plants and for

increasing expected values, and that the Pearson residuals

were approximately normally distributed. The Pearson v2

goodness-of-fit statistic showed a non-significant deviation
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from the expected residual variation (low density: P = 0.49;

high density: P = 0.12). Furthermore, the Durbin–Watson sta-

tistic of the Pearson residuals was 1.86 and 1.76 at low and

high plant density, respectively, which were not significantly

different from the expected value of two in the case of residuals

without autocorrelation.

To further examine the ecological relevance of the proposed

coupled growth model (equation 4), where the growth rate of

individual plants is expected to be influenced by the relative

size of the plant and the degree of asymmetric competition, this

model was compared to a model in which the growth of all

plants was modeled individually by the Birch growth model

(equation 1), with no coupling, and therefore no explicit mod-

eling of interactions among individuals (Fig. 1). The coupled

competitive growth model (equation 4) fitted better than

the individual Birch growth model (equation 1) even though

the number of estimated parameters in the coupled competi-

tive growth model was fewer than in Birch growth model

(Table 1).

In the coupled competitive growth model (equation 4), the

individual growth parameters (c and r) showed a considerable

among-plant variation (Fig. 2), and were positively correlated

(Pearson correlation coefficient between the means of the pos-

terior distributions; low density: r = 0.72, P < 0.001; high den-

sity: r = 0.65, P < 0.001). There was a significant negative

correlation between the mean of the posterior distribution

of the individual shape parameters, ci, and the final size of

the plants (Fig. 2): the plants that ended up being the larger

individuals in the population reached the inflection point at

a larger size. At low density, there was a negative correlation

between initial growth rate (ri) and final size (wi) whereas at

the highest density there was no significant correlation be-

tween initial relative growth rate and final size of the plants.

This means that at both densities, plants that ended up being

the largest in the population were not those with the highest

initial relative growth rates.

The degree of size-asymmetric growth was significantly

larger than one, indicating that the growth rate of the individ-

ual plants is more than proportional to the size of the plant

relative to others in the population. The 95% credibility inter-

val for awas 1.26–1.37 at the low density and 1.11–1.27 at the

high density. Thus, the estimated degree of size-asymmetric

growth was not significantly different at low versus high

density.
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Figure 1 individually fitted growth curves for five plants selected to

cover a range of sizes, grown at low density. The growth curves are

based on the estimated biomass after 11 days for the five plants and

the corresponding maximum likelihood estimates of the growth

parameters of the Birch model.

Table 1 maximum likelihood value and number of parameters in

the coupled competitive growth model and the individual Birch

growth models

Density Model

Maximum

likelihood

Number of

parameters

Low Coupled competitive growth

model

�1573 3532+2+1=73

Individual growth models �1658 3534+1=141

High Coupled competitive growth

model

�1221 3532+2+1=73

Individual growth models �2206 3534+1=141
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Figure 2 the relationship between the observed final size of the plants

grown at low density and the estimated initial relative growth rate of

the individual plant growth curves, ri (Pearson correlation coefficient

between themean of the posterior distributions and the final size: r =�
0.38, P = 0.025), and the estimated infection point of the individual

plant growth curves, ci (Pearson correlation coefficient between the

mean of the posterior distributions and the final size: r = �0.41, P =

0.013). The estimates are shown by the 25, 50 and 75% percentiles

of the posterior distributions of the parameters.
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The estimated degree of size-asymmetric growth in the sim-

ple Birch growth model where r and c were assumed not to

vary among plants did not differ significantly from the esti-

mates obtained using a Richards growth model on the same

data using a slightly different estimation procedure (Damgaard

1999; Damgaard et al. 2002; Schwinning and Fox 1995;

Wyszomirski et al. 1999).

Discussion

There was either a negative or no correlation between initial

growth rate and final size when individual, uncoupled growth

curves were fit to each plant. This suggests that competitive

interactions later in the course of growth weremore important

in determining final sizes than were the initial growth rates.

This stand in contrast to numerous statements in the literature

that a high initial growth rate is critical for an individual’s com-

petitive advantage. A negative correlation between initial

growth rate and final size could even be interpreted as evi-

dence for a trade-off between the ability to grow quickly before

competition becomes important and the ability to compete.

The full coupled growth model (equation 4) fit the growth

data better than individual, uncoupled growth models (equa-

tion 1) even though the number of estimated parameters in the

coupled competitive growth model was fewer than in Birch

growth model. This is a strong indication of the importance

of (i) modeling competition explicitly and (ii) including the

effects of size-asymmetric competition in the model.

The estimate of the degree of size-asymmetric growth seems

to depend critically on whether or not the growth parameters

are allowed to vary among plants. It has been demonstrated

that such estimates can become highly biased if latent variabil-

ity is ignored (Cam et al. 2002). It is also encouraging that the

estimation of the degree of size-asymmetric growth was fairly

robust across different flexible sigmoid growth models. We

conclude that flexibility in the inflection point is important

for modeling the growth of competing individuals, but that

the specific formulation of this flexibility may not be critical.

The main advantage of the Birch model is the biological inter-

pretability of its parameters.

The degree of size-asymmetric growth has recently been

modeled with a spatially explicit approach in which the shar-

ing of resources within a zone-of-influence around each plant

is described by a tanh function (Schneider et al. 2006). Inclu-

sion of space requires much more complex data collection and

modeling. While this may prove to be necessary in some sit-

uations, it is important to know how far non-spatial individ-

ually based models can take us (Weiner and Damgaard 2006).

Models should be ‘as simple as possible and as complicated as

necessary’, and the increased complexity of spatially explicit

models may not be justified in many cases.

The estimation of all the individual parameters was possible

in this case due to the relatively few competing plants. In larger

populations, it may not be possible to estimate parameters for

all individuals. In this case, it will be necessary to use a random

sample of individuals in the population. Another possibility

would be to reduce the number of parameters by making

assumptions about the distribution of individual growth

parameters. Results to date, however, suggest that such distri-

butions will be different under different competitive regimes,

but further investigation is needed.

One result of our earlier analysis of these data (Damgaard

et al. 2002) that the new analysis does not support was that

the degree of size-asymmetric growth, i.e. the degree of cur-

vature of the growth–size relationship (a), increased at higher

density. In the current analysis, a was not significantly differ-

ent at the two densities. We have no explanation for this

change, and we can only conclude that this result is not robust

across models.

We conclude that (i) the Birch model does offer advantages

in interpretability over the Richards model in the modeling of

individual growth in plant populations, (ii) competitive inter-

actions are much more important than initial growth rates in

determining final sizes in crowded plant stands and (iii) explic-

itly including competition and size-asymmetric growth (which

is a result of size-asymmetric competition) into one large

model improves model performance and interpretability. A

quantitative understanding of stand development in terms

of the growth of individual plants, as altered by competition,

is within reach.

Acknowledgements

We thank Hisae Nagashima for permission to use her data, and two

anonymous reviewers for helpful comments on the manuscript. This

research was supported, in part, by a Sabbatical Fellowship to J.W.

from the National Center for Ecological Analysis and Synthesis, a Cen-

ter funded by NSF (Grant #DEB-0553768), the University of Califor-

nia, Santa Barbara, and the State of California.

References

Birch CPD (1999) A new generalized logistic sigmoid growth equation

compared with the Richards growth equation. Ann Bot 83:713–23.

Cam E, LinkWA, Cooch EG, et al (2002) Individual covariation in life-

history traits: Seeing the trees despite the forest. Am Nat

159:96–105.

Carlin BP, Louis TA (1996) Bayes and Empirical Bayes Methods for Data

Analysis. London, UK: Chapman & Hall.

Clark JS, LaDeau S, Ibanez I (2004) Fecundity of trees and the colo-

nization-competition hypothesis. Ecol Monogr 74:415–42.

Damgaard C (1999) A test of asymmetric competition in plant mono-

cultures using the maximum likelihood function of a simple growth

model. Ecol Modell 116:285–92.

Damgaard C, Weiner J, Nagashima H (2002) Modelling individual

growth and competition in plant populations: growth curves of Che-

nopodium album at two densities. J Ecol 90:666–71.

Fox JC, Ades PK, Bi H (2001) Stochastic structure and individual-tree

growth models. For Ecol Manage 154:261–76.

Damgaard & Weiner | Modeling the growth of individuals in crowded plant populations 115



Grime JP, Hodgson JG, Hunt R (1989) Comparative Plant Ecology. London,

UK: Chapman and Hall.

Hunt R (1982) Plant Growth Curves. Baltimore, MD: University Park.

Nagashima H, Terashima I, Katoh S (1995) Effects of plant density on

frequency distributions of plant height in Chenopodium album

stands: analysis based on continuous monitoring of height-growth

of individual plants. Ann Bot 75:173–80.

Ratkowsky DA (1983)Nonlinear Regression Modeling. New York: Marcel

Dekker.

Richards FJ (1959) A flexible growth function for empirical use. J Exp

Bot 10:290–300.

Schneider MK, Law R, Illian JB (2006) Quantification of neighbor-

hood-dependent plant growth by Bayesian hierarchical modelling.

J Ecol 94:310–21.

Schwinning S, Fox GA (1995) Population dynamic consequences of

competitive symmetry in annual plants. Oikos 72:422–32.

Schwinning S,Weiner J (1998)Mechanisms determining the degree of

size-asymmetry in competition among plants.Oecologia 113:447–55.

Seber GAF, Wild CJ (1989) Nonlinear Regression. New York: Wiley.

Thornley JHM (2000) Plant and crop modeling: a mathematical

approach to plant and crop physiology. Caldwell, NJ: Blackburn

Press.

Vanclay JK (1994) Modelling Forest Growth and Yield. Wallingford, UK:

CAB International.

Weiner J (1990) Asymmetric competition in plant populations. Trends

Ecol Evol 5:360–4.

Weiner J, Damgaard C (2006) Size-asymmetric competition and size-

asymmetric growth in a spatially-explicit zone-of-influence model.

Ecol Res 21:707–12.

Weiner J, Kinsman S, Williams S (1998) Modeling the growth of

individuals in plant populations: local density variation in

a strand population of Xanthium strumarium. Am J Bot 85:

1638–45.

Wolfram S (2003) The Mathematica Book. Cambridge: Wolfram Media.

Wyszomirski T, Wyszomirska I, Jarzyna I (1999) Simple mechanisms

of size distribution dynamics in crowded and uncrowded virtual

monocultures. Ecol Modell 115:253–73.

Zeide B (1993) Analysis of growth equations. For Sci 39:594–616.

116 Journal of Plant Ecology


