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Several macroecological studies
have used static spatial data to
evaluate plant competition in natu-
ral ecosystems and to investigate
its role in plant community dynam-
ics and species assembly. The
assumptions on which the infer-
ences are based have not been
consistent with ecological knowl-
edge. Inferences about processes,
such as competition, from static
data are weak. Macroecology will
benefit more from dynamic data,
even if limited, than from increas-
ingly sophisticated analyses of
static spatial patterns.

Macroecology (i.e., the study of ecosys-
tems using a ‘top-down’ approach at large
spatial scales to characterize patterns of
abundance, distribution, and diversity [1])
has been successful in detecting broad
ecological patterns. The value of using
large ecological data sets that cover sub-
stantial parts of the world and include wide
climatic gradients to develop and test gen-
eral ecological hypotheses is widely recog-
nized. Here, we emphasize a critical
limitation of most studies, one that needs
to be overcome if macroecology is to fulfill
its potential. We focus on one process as
an example of this general problem: com-
petition among plant species.

Competition Among Species
Competition among neighboring plants
arises because the resources needed
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for plant growth and reproduction are lim-
ited and contested, and a plant that
extracts or monopolizes more of a limiting
resource will grow faster and reproduce in
greater numbers than another that obtains
less. In principle, it should be possible to
examine competition for limiting resources
if there is sufficient knowledge of the
resource levels and the physiological pro-
cesses of the competing plants. However,
in most terrestrial ecological studies, there
is little, if any, information on the uptake
and dynamics of the resources that limit
the growth of different plant species.
Instead, competition is inferred from
observed negative effects of neighboring
plants on growth without information
about the resources for which the plants
were competing. Competitive interactions
generally have been measured either: (i) by
measuring biomass at a known initial plant
density in manipulated and replicated
competition experiments [2,3]; or (ii) by
measuring the effect of the neighboring
plants on the growth of the target species
in a time-series study [4,5].

The important common feature of these
two general methods of measuring com-
petition is that they are based on dynamic
data. A single measurement in time does
not tell us anything about processes. One
needs to know the initial density or rely on
a time series to measure the effect of
neighboring plants on plant growth (i.e.,
information on the change in plant bio-
mass from one time period to the next).
Just as one needs more than one mea-
surement in time to measure a velocity or a
rate, one needs more than one measure-
ment in time to measure the effect of the
neighboring plants on the growth of target
plant species.

Unfortunately, good ecological time-series
data (i.e., longitudinal plant abundance
data), which are needed to fit empirical
plant population ecological models and
make strong inferences concerning the
mechanisms of plant–plant interactions
are sparse. In the endeavor to test broad
ecological hypotheses addressing the
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mechanisms of plant–plant interactions
and their role in plant community dynam-
ics and species assembly processes on a
large spatial scale, it is tempting to circum-
vent this lack of ecological time-series or
experimental data and construct ad hoc
methods where assumptions, which are
often questionable, are used on available
large-scale plant abundance data. Here,
we discuss two representative examples.

Unjustified Assumptions
One type of assumption that often is used
to infer plant competitive mechanisms
from static spatial data sets is that the
biomass of neighboring plants is used
as a proxy for interspecific interactions.
For example, a recent article [6] states
‘. . .we also collected the above-ground
biomass of all other herbaceous species
in each subplot as a proxy for interspecific
interactions. Despite being an indirect
measure, biomass production by neigh-
bouring individuals is widely used to reveal
the outcome of interspecific interactions
(Tillman & Wedin 1991; Campbell & Grime
1992), . . .’. This assumption is widely
used, but it is usually unfounded; neither
is it corroborated by the two studies cited,
which describe carefully designed and
replicated competition experiments. One
problem with using the biomass of neigh-
boring plants as a proxy for interspecific
interactions in randomly sampled plots
from natural ecosystems is that the total
plant biomass of the plots is expected to
vary due to variation in productivity, dis-
turbance, and so on, among the plots.
Variation in total biomass due to plot het-
erogeneity is a likely explanation for the
results reported [6], where the neighboring
plants at some sites have positive (facilita-
tive) effects and at other sites a negative
(competitive) effects on the target plant.
Despite this, the authors [6] concluded
that the effects of competitive interactions
will be averaged out at macroscales.
There are many possible explanations
for any static relation among neighboring
plants; for example, the observation that a
small plant has large neighbors. The
neighbors could be large because the



subject plant is small, or the subject plant
could be small because the neighbors are
large. Simply put, one cannot assume that
a high biomass of neighboring plants cor-
responds to a high competitive effect of
the neighboring plants on the target plant.

Another assumption that often is used to
make inferences about plant competitive
mechanisms from static spatial data is to
assume that the sampled plant communi-
ties are in equilibrium. A recent study [7]
makes this assumption to estimate the
extent of intransitive competitive interac-
tions and their role for maintaining biodi-
versity in two large data sets. The authors
concluded that intransitive competitive
interactions are fairly common and have
a positive effect on species richness. If the
assumption of equilibrium is violated, then
the positive effect of the estimated intran-
sitive competition on species richness
may be explained by the fact that species
richness is at transient stage rather than a
result of competitive hierarchies.

It is well established that few, if any, natural
ecosystems are at or close to equilibrium.
For some purposes, it is both mathemati-
cally convenient and useful to assume eco-
logical equilibrium to generate predictions
(with the appropriate caveats), such as
assuming communities and their species
abundance distributions are at equilibrium
to predict extinction debt patterns over
time [8]. It is more problematic to assume
that plant abundances are in equilibrium in
a test of the nature of the ecological mech-
anisms that control plant abundances,
especially when we know that the test is
highly sensitive to this assumption.

The Need for Dynamic Data
The notion of measuring plant competition
from static spatial data is a specific case of
the more general endeavor to extract eco-
logical processes from observed patterns.
New statistical methods to analyze macre-
cological patterns are continuously being
developed. However, even the most
sophisticated analyses cannot overcome
the limitations of ‘snapshot’ data for
inferring processes: even just two points
in time can produce information that sim-
ply cannot be obtained from static data.

Measuring interspecific interactions in nat-
ural ecosystems is a nontrivial task [5], and
considering its ecological relevance and
status as a classic question in plant pop-
ulation ecology, it is surprising that there
have been relatively few studies that have
investigated the direct effect of interspe-
cific interactions on plant performance
and their role in plant communities. The
results are still too sparse to allow much
generalization across different plant com-
munities or even among years. This para-
doxical situation cannot be resolved by
relying on unsupported assumptions for
evaluating the role of plant competition in
species assembly processes.

Rather, we should focus on measuring
plant growth in natural ecosystems by
collecting longitudinal plant abundance
data without disturbing the plant commu-
nity. Several relatively labor-intensive
methods of measuring plant abundance
without disturbance already exist; for
example, the demographic plant data
analysed by Adler et al. [4] were extracted
from digitized maps originally collected
using a pantograph, and the ‘point-inter-
cept’ method has been applied in several
studies [5,9]. New technologies, such as
LIDAR laser imaging, which can describe
plants in 3D, will be game changers in the
collection of species-specific longitudinal
plant abundance data in natural and cul-
tural ecosystems [10]. This will enable us
to fit dynamic models of plant competition
in a multitude of ecosystems and at sev-
eral spatial scales.

Longitudinal plant abundance data will
provide us with measures of the strength
and importance of competition and allows
us to predict plant community dynamics.
However, if we want to understand the
mechanisms that control plant competi-
tion, we need to use experiments, ‘natural’
experiments, human-caused ‘accidental’
experiments, and also long-term designed
Trends
experiment, where the uptake of limiting
resources are measured [11].

Concluding Remarks
There is general agreement that there is a
hierarchy of inferential power among differ-
ent types of scientific data, with static pat-
terns as the weakest, dynamic descriptive
data at a higher level and controlled experi-
ments (which are not always possible) as
the strongest type of evidence. Macroecol-
ogy needs to move beyond the analysis
and interpretation of static ecological data
sets [12]: ‘It's about time.’
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