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abstract: A positive correlation between the sizes of plants and
the sizes of their nearest neighbors has been observed in many plant
populations and is most often attributed to variation in microsite
quality. We demonstrate another potentially important cause, using
a simple spatial simulation model in which a plant’s size is deter-
mined by its available area plus stochastic variation. If the spatial
arrangement of individuals is nonuniform and local crowding re-
duces individual size, a positive correlation between the size of a
plant and the size of neighboring individuals is to be expected. If a
plant is small because it is crowded, its nearest neighbors will also
tend to be crowded and therefore small. Such positive correlations
will be observed whenever any trait of an object is related to the area
available to it. Looking at the performance of neighboring objects
without explicitly considering distance can give a very misleading
signal.

Keywords: available area, Moran’s I, neighboring domains, spatial
autocorrelation, symmetric competition, Voronoi tessellations.

Introduction

Within a population of plants, it is often observed that
relatively large individuals tend to have relatively large
neighbors, while smaller individuals have small neighbors
(Liddle et al. 1982; Reed and Burkhart 1985; Kenkel et al.
1989, 1997; Liu and Burkhart 1994; Wilson and Gurevitch
1995; Garcı́a 2006). Relationships between the sizes of in-
dividuals and the sizes of their nearest neighbors have been
studied in plant ecology and forestry for decades (Pielou
1961). Since plant size reflects environmental conditions
to a degree, such positive spatial autocorrelations have
been most often interpreted as an indication of site het-
erogeneity. If some locations have better conditions or
more resources than others, individuals growing in more
favorable patches will be larger than those growing in less
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favorable ones (Mitchell-Olds 1987; Fox et al. 2001; Garcı́a
2006).

Other explanations have also been considered for pos-
itive spatial correlations in neighbor sizes. They may result
from positive neighbor interactions, which appear to be
more common than previously thought (Brooker et al.
2008). Genetic relatedness among neighbors and spatially
correlated emergence times (Wilson and Gurevitch 1995;
O. Garcı́a, personal communication), as well as patterns
of mortality during self-thinning (Kenkel et al. 1989), can
also produce positive correlations.

Here we describe another potentially important cause
of positive correlations in neighbor size, which has not
been invoked explicitly so far. If competition among in-
dividuals is local and the spatial distribution of plants is
not uniform, then a positive correlation between plant size
and neighbors’ sizes will occur due to local density de-
pendence. The effect presented arises from geometric de-
pendencies between neighboring domains and, as such,
may appear in other systems as well.

We assume that plants compete for two-dimensional
space, which can be considered a reflection of resources
(e.g., light or soil resources). A large amount of space is
potentially available to plant P if it has no or few close
neighbors. In such a case, its nearest neighbors will also
tend to have quite a bit of space because plant P—being
one of their neighbors—is distant from them, which means
that some space is available to them in the direction of
plant P. Similarly, if a plant is very closely surrounded by
neighbors and thus has very little space available to it, the
area available to its neighbors will be restricted, at least in
one direction. Therefore, the nearest neighbors of a
crowded plant will also tend to be crowded, and a positive
correlation between space available to neighboring indi-
viduals is to be expected. If the size of an individual is
sufficiently dependent on the amount of space available
to it, then a positive correlation between the sizes of neigh-
boring individuals will result. Here we demonstrate this
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Table 1: Summary statistics of the Voronoi mosaics for the spatial
patterns investigated, based on approximately 20,000 points

Hyperdispersed Random Clumped

Variance in counts
(mean p 1) .486 1.021 1.294

Mean polygon area 1.001 .997 .993
SD of polygon area .262 .535 .746
Skewness of polygon area .837 1.051 2.132

point using a simple static model of local competition, in
which the number and locations of neighbors influence
plant size.

Methods

We generated 2,500 point locations within a square, at the
average density of one individual per arbitrary unit. We
used three spatial patterns, from highly hyperdispersed to
fairly clumped, generated according to the method of Pie-
lou (1960), slightly modified (see appendix in the online
edition of the American Naturalist for details). A Thiessen/
Voronoi polygon or tessellation, defined as the set of all
points on the plane that are closer to a point than to any
other point (Liddle et al. 1982; Mithen et al. 1984; Kenkel
1990; Berger et al. 2008), was determined for each point.
We assume that individual plant size is a function of its
Voronoi polygon area and random variation. Using ar-
bitrary units, the size of individual i can be written as

w p C � A � R , (1)i i i

where Ai is polygon area, Ri is drawn from the normal
distribution with 0 mean and standard deviation jR, and
C is a positive constant ensuring that all sizes are positive.
Since we are interested only in correlations between in-
dividual sizes, not their absolute values, the value of C
does not affect the results of the analyses.

We looked at four values of jR (0, 0.3, 0.6, and 0.9).
This parameter determines the amount of stochastic var-
iation added to the polygon area. For , individualj p 0R

size is completely determined by polygon area. The greater
jR, the smaller the proportion of size variation determined
by the “available area.”

To analyze simulated data, we considered two definitions
of neighbors: (a) the nearest individual (each individual has
only one nearest neighbor) and (b) all individuals sharing
a border of Voronoi polygon with an individual (in this
case, number of neighbors varies). We look at the simple
correlation between the size of a plant and (i) the size of
its nearest neighbor, (ii) total size of polygon neighbors,
and (iii) mean size of polygon neighbors.

Second, we use Moran’s I statistic (Upton and Fingleton
1985; Bailey and Gatrell 1995), which has been used often
in studies of spatial autocorrelation in plant populations.
It is of the form

n n ¯ ¯n � � u (w � w)(w � w)ij i jip1 jp1

I p , (2)n n n2¯[ ] ( )� (w � w) � � ui ijip1 ip1 jp1

where n is the number of plants, is mean size, and uijw̄
describes proximity between individuals i and j. Moran’s

I is a “generic” statistic: its precise form depends on the
choice of proximity matrix. Here, we employ two specific
definitions, corresponding to the definitions of neighbors
given above: (a) if individual j is the nearest neigh-u p 1ij

bor of individual i (otherwise, ), and (b) ifu p 0 u p 1ij ij

individuals i and j share a boundary of Voronoi polygon
(otherwise, ). For very large n, the expected valueu p 0ij

of I is close to zero when there is no spatial autocorrelation
(Upton and Fingleton 1985; Bailey and Gatrell 1995).

For each pattern and for each value of jR, we performed
10 replicate runs. To avoid possible edge effects, we ex-
cluded from the analyses (1) individuals close to the square
edge where a polygon was not completely defined by sur-
rounding individuals, (2) individuals neighboring any in-
dividual in category 1, and (3) individuals neighboring
any individual in category 2. As a result, nearly 1,900
individuals were used for the analysis in each run.

In a parallel analysis we applied a Box-Cox transfor-
mation (Wyszomirski 1992) to the data. This resulted in
only very slight changes in the correlations, and these re-
sults are presented in the appendix in the online edition
of the American Naturalist.

Results

The patterns used in simulations differed considerably in
their degree of clumping and resultant distribution of poly-
gon areas (table 1). When , size is proportional toj p 0R

area, so size correlations are the same as area correlations
(table A1 in the online edition of the American Naturalist).
Values of Moran’s I are also positive, indicating the pres-
ence of positive spatial autocorrelation: neighbors’ sizes
tend to be more similar than randomly selected pairs. With
increasing amounts of added random variation, all size-
area correlations become weaker and so do the correlations
between individual size and sizes of neighbors (fig. 1; table
2). For highly nonuniform patterns, however, correlations
are notable for all levels of added variation investigated
(table 2; see appendix in the online edition of the American
Naturalist for complete results).
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Figure 1: Correlation between plant size and nearest neighbor size versus
the degree of added random normal variation (jR) for the three simulated
spatial patterns investigated. Data points are means from 10 simulation
runs.

Table 2: Correlations of individual size and area available and sizes of neighbors, for the clumped spatial pattern

Correlation of individual size with

Amount of added normal variation

j p 0R j p .3R j p .6R j p .9R

Polygon area 1.000 (.000) .928 (.004) .780 (.012) .637 (.016)
Nearest neighbor size .418 (.029) .339 (.030) .231 (.034) .157 (.030)
Total size of all polygon neighbors .876 (.007) .794 (.007) .636 (.017) .479 (.017)
Mean size of all polygon neighbors .689 (.017) .618 (.019) .483 (.018) .349 (.017)
Moran’s I:

With nearest neighbor .307 (.027) .263 (.028) .196 (.029) .142 (.026)
With all polygon neighbors .501 (.018) .432 (.019) .312 (.015) .209 (.015)

Note: Standard deviations for 10 replicate runs are in parentheses. See the appendix in the online edition of the American Naturalist

for results for the other spatial patterns and for Box-Cox transformed data.

Discussion

When points are not uniformly distributed in space, rel-
atively large Voronoi polygons tend to abut other relatively
large Voronoi polygons. If individual size is dependent on
local crowding, large individuals tend to have large neigh-
bors and small individuals tend to have small neighbors,
simply due to local density dependence. This result is not
dependent on the measure of local crowding used here;
polygons are just an intuitive and tested method for sim-
ulation of spatial effects at the individual level. The nearest
neighbors of plants that are crowded, and therefore small,
will also tend to be crowded and therefore small. This
effect may be responsible for patterns that have been at-
tributed to site heterogeneity (e.g., Fox et al. 2001 and
references therein; Garcı́a 2006) or other factors. We con-
clude that looking at the performance of a plant and its

nearest neighbors without accounting explicitly for the
distances to these neighbors can be very misleading.

Positive correlations between neighbor sizes that are due
to this effect can be expected in nature when the depen-
dence of size on the available space is sufficiently strong.
The proportion of size variation explained by spatial effects
ranges from nearly 0% to almost 90% (Hara and Wyszo-
mirski 1994). Areas of Voronoi polygons are considered
to be among the best spatial predictors of plant perfor-
mance in even-aged monocultures (Kenkel 1990), often
explaining more than one-third of the variation in indi-
vidual plant size (Sletvold and Hestmark 1999; Jarzyna
2000). In our study, there were still marked positive cor-
relations between neighbors’ sizes when Voronoi polygon
area explained only around 25% of size variation, sug-
gesting that the effect may be common in the field. The
effect is most pronounced for clumped spatial distribu-
tions. As the pattern approaches uniformity, variation due
to differences in local density decreases, and other sources
of variation dominate.

Of course, the phenomenon addressed here does not
rule out other possible explanations for positive spatial
correlations in plant size, such as patterns of mortality,
spatial heterogeneity, genetic relatedness, or facilitation.
When groups of small plants and groups of large plants
are observed in the field, we suggest that researchers ask
whether this could be a result of local density dependence.

We have focused on positive correlations in the sizes of
neighbors, which are very common, but negative corre-
lations between the sizes of neighbors have also been doc-
umented in forests (Zeide 1972; Fox et al. 2001), within
crop rows (Yoda et al. 1957; Mead 1971), and in experi-
mental populations (Franco and Harper 1988). The in-
crease in spatial uniformity of surviving plants during the
process of density-dependent mortality (“self-thinning”;
Kenkel 1988) and the observation that it is the smaller plants
that die during this process (Watkinson et al. 1983; Weiner
and Thomas 1986; Kenkel et al. 1989) imply that negative
correlations between plant size and sizes of neighbors occur
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before there is extensive density-dependent mortality. Since
competition in a polygon model is size symmetric, our re-
sults suggest that size-asymmetric competition (Cannell et
al. 1984; Weiner 1990) must be invoked to explain negative
correlations in sizes of neighbors. Further investigation of
the interactions between the effect described here and other
effects influencing neighbor size correlations is needed.

While we address plant sizes and plant competition here,
the phenomenon described may be more general. For any
objects irregularly dispersed in space, if a trait of the object
is correlated with the space available around the object,
positive spatial autocorrelations in the trait can be expected.
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