
OIKOS 47: 211-222. Copenhagen 1986 

Size variability and competition in plant monocultures 

Jacob Weiner and Sean C. Thomas 

Weiner, J. and Thomas, S. C. 1986. Size variability and competition in plant mono- 
cultures. - Oikos 47: 211-222. 

For most ecological and evolutionary questions, variability in plant size is best 
evaluated through measures of inequality such as the Gini Coefficient or the co- 
efficient of variation. Models in which competition is "two-sided" ("resource deple- 
tion") predict unchanged or lower size inequality at higher densities after a given 
period of growth. Models in which competition is "one-sided" ("asymmetric competi- 
tion") predict higher size inequality at higher densities. Of 16 published experiments 
which present data on the effects of density on size distributions in monocultures, 14 
support the hypothesis that competition between plants is asymmetric. 
During the development of an even-aged monospecific stand, size inequality in- 
creases over time until the onset of self-thinning, then inequality decreases as self- 
thinning progresses. In two independent data sets we found a linear relationship with 
a slope near -0.2 between size inequality (as measured by the Gini Coefficient) and 
log mean plant weight during self-thinning. This trend is also consistent with the 
asymmetric competition hypothesis. 
Plant competition is usually "one-sided", and we suggest that this asymmetry is pri- 
marily due to competition for light. 
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1.  Introduction 

Within a population, plants vary in size. Larger indi- 
viduals are more likely to continue to live than smaller 
individuals (Hiroi and Monsi 1966, Watkinson et  al. 
1983) and large individuals have more offspring than 
small individuals (Leverich and Levin 1979. Solbrig 
1981). Thus, if allelic frequencies among the large 
plants are different from those in the rest of the popula- 
tion, size differences will have a major effect on allelic 
frequencies in subsequent generations. Future genetic 
makeup of a population will be determined by which 
plants are large, not just which plants survive. Size dif- 
ferences within plant populations may be determined by 
several factors, some of which affect plants' growth 
rates while some affect size in other ways. Differences 
in size may be determined by (1) age differences, (2) ge-
netic differences, (3) environmental heterogeneity, (4) 
maternal effects, (5) differential effects of herbivores, 
parasites o r  pathogens, or (6) competition. In most 
cases, size distributions will be the result of interactions 
among these factors. This paper addresses the effect of 
competition on size variability in even-aged plant mono- 
cultures. In the first section. we discuss the statistical 
evaluation of size variability. The second section looks 
at models of plant growth and interference and the pre- 
dictions thesc models make concerning competition and 
size distributions. Finally we examine the available em- 
pirical data on the relationship between competition 
and size variability in even-aged plant populations. 

2. Analysis and interpretation of size variability 

There has been considerable confusion about the analy- 
sis of size variability in plant populations. Many ecologi- 
cal and agronomic questions concerning size distribu- 
tions are posed in terms of "plant-to-plant variation". 
The central parameters describing variation in classical 
statistics are the variance and the standard deviation. 
Since these parameters measure absolute rather than 
relative variation. they are inappropriate for most ques- 
tions in plant population ecology. For example. we 
would expect a population of large plants to have a 
greater absolute variance in sizes than a population of 
small plants. The standard measurement of relative 
variation is the coefficient of variation (CV = standard 
deviation/mean, usually expressed as a percent). The 
coefficient of variation has been used by agronomists 
who are concerned with crop uniformity to look at the 
effects of various factors on it (Edmeades and Daynard 
1979, Hedley et al. 1983). Some plant ecologists have 
also used CV to look at plant population structure (e.g. 
Naylor 1976). However, the discovery that most plant 
populations consist of many small individuals and rela- 
tively few large ones has focused research on the 
asymmetry or  skewness of plant size distributions. 
Many recent studies have addressed the issue of skew- 
ness to the exclusion of relative variation. There has 

been little discussion of what positive skewness of a size 
distribution means biologically. It has been assumed by 
many researchers that all plant populations except those 
in the seed or seedling stage have highly skewed size dis- 
tributions, but there are several reports of distributions 
which do not differ significantly from normal. Naylor 
(1976) and Windle and Franz (1979) reported normal 
distributions of shoot weights in barley at  every harvest, 
and Hedley et  al.'s (1983) size distributions for "leaf- 
less" peas (see below) are also not significantly different 
from normal. Andrzejewska and Falinska (1983) state 
that normal size distributions occur in stable popula- 
tions under favorable invironmental conditions. Some 
researchers believe that skewness is the result of compe- 
tition, and it has been proposed that skewness be used 
as a measure of interference (Higgins et al. 1984). In 
some cases researchers (Rabinowitz 1979, Hawthorn 
and Cavers 1982) have even calculated skewness for log 
distributions. The biological meaning of such a statistic 
is totally obscure, yet skewness is somehow believed to 
reflect a biologically important attribute. H~ghly vari- 
able, skewed size distributions have been called "size hi- 
erarchies" since the differences in size are thought to re- 
flect "hierarchy of exploitation" (Harper 1977). 

Starting with the somewhat vague concept of a size 
hierarchy as thought of by plant ecologists, Weiner and 
Solbrig (1984) showed that positive skewness of the size 
distribution reflects something very different. They pro- 
posed that it is the concept of inequality, such as studied 
by economists, which is synonymous with the concept of 
a size hierarchy. They went further and proposed the 
use of specific methods, the Lorenz curve a n d  Gini Co- 
efficient, to evaluate size inequalities. Inequality seems 
to be more relevant to ecological and evolutionary ques- 
tions than is skewness. For example, Levin (1978) and 
Begon (1984) discuss the fact that size hierarchies and 
resultant fecundity variation will tend to reduce the ef- 
fective population size (since many individuals may be 
too small to reproduce) and therefore should be ex-
pected to reduce genetic variation within the popula- 
tion. There will also be differences in size anlong those 
which are large enough to reproduce. Among those 
plants which do reproduce, large variation in fecundity 
will have a similar, although less extreme, effect to the 
"genetic mortality" of those individuals which d o  not re- 
produce at all. The concentration of genetic representa- 
tion in the next generation by the most fecund indivi- 
duals is exactly what is meant by inequality in fecundity. 
Since size is correlated with fecundity, size inequality is 
also of interest to the study of evolution. In terms of 
biomass, inequality represents the degree to which the 
biomass is concentrated within a small fraction of the 
population. This may be a useful thing for ecologists, 
agronomists and foresters to know. Since skewness is 
not a measure of inequality, researchers may have been 
looking at a parameter whose behaviour is weakly cor- 
related with what is important. 

Sen (1973) discusses the relative merits of different 



measures of inequality in studying distributions of 
wealth and income. Reasonable measures of inequality 
include the coefficient of variation, the standard devia- 
tion of the logs, Theil's measure of entropy and the Gini 
Coefficient. k l l  these measures of inequality will be 
highly correlated. For example, for the 28 size distribu- 
tions presented by Weiner (1985), the correlation be- 
tween the Gini Coefficient and the coefficient of vari- 
ation is 0.99. 

There has also been some discussion of bimodality in 
plant size distributions. Bimodality has been reported in 
Tagetes yatula (Ford 1975) at high density and in Festuca 
parmdoxa (Rabinowitz 1979) at low density. Several au- 
thors have stated that bimodality can result from asym- 
metric competition, which produces distinct dominant 
and suppressed classes (Aikman and Watkinson 1980, 
Ford and Diggle 1981). Bimodality has not been defined 
statistically: therefore there is no statistical test for bi- 
modality. Its visual appearance in a histogram is very 
sensitive to the number of size classes used. We do not 
find bimodality to be a generally occurring phenomenon 
in our examination of -the ~ubl i shed  literature on size 
distributions of even-aged monospecific populations, 
but further study awaits clarification of vague concepts 
and the development of appropriate statistical tools. 

3. Models of the interaction between competition and 
size distributions 

We distinguish between two basic types of models of the 
interaction between competition and size distributions, 
We consider .'resource depletion" or "two-sided" 
models to be those in which competition acts on all indi- 
viduals equally or in proportion to their size. In the lat- 
ter case. although large plants will have a greater effect 
on small plants than vice versa, small plants will reduce 
the growth or size of large plants in proportion to their 
relative sizes. In "resource pre-emption" or "one-sided" 
models, large plants suppress the growth of small plants 
more than they are suppressed, and this effect is greater 
than would be expected from their relative sizes. In 
most extreme form of "one-sided" competition, the 
growth of large plants would not be reduced at all by 
smaller individuals. 

3.1. "Resource depletion" models of competition 

3.1.1. A n  exponential "resource depletion" model 
The first model of the generation of size distributions in 
plant populations comes from the work of Blackman 
(1919) and was further developed by Koyama and Kira 
(1956). Koyama and Kira considered a population of 
seedlings which were either equal in size or normally 
distributed. Each individual grows exponentially. Rela- 
tive growth rates of individuals are also either equal or 
normally distributed. Thus, the size distribution of an 
even-aged population of plants is a function of (1) the 
distribution of initial sizes, ( 2 )  the distribution of rela- 

tive growth rates, and (3) the length of time the plants 
grow. For such a model Koyama and Kira demonstrated 
that (1) if initial sizes are normally distributed but rela- 
tive growth rates are all equal, the size distribution re- 
mains normal. (2) If initial sizes are all equal and rela- 
tive growth rates are normally distributed, a log-normal 
size distribution develops. Combining the normal distri- 
bution of initial sizes and the normal distribution of 
relative growth rates gave similar results to (2). We have 
repeated Koyama and Kira's simulations with a com- 
puter program. Even if there is a correlation between 
the initial size of an individual and its relative growth 
rate, the effect of variance in growth rate seems to over- 
whelm any effect due to  differences in initial size. In 
their model, the rate with which inequality (and skew- 
ness) develop is a function of the variance (in the strict 
statistical sense) in growth rates (Koch 1966). Only the 
variance in growth rates, not their mean value, deter- 
mines the inequality and skewness of the size distribu- 
tion after a given period of growth. Koyama and Kira 
clearly demonstrate that interference is not required for 
the development of skewed, highly unequal size distri- 
butions in even-aged populations. 

The model of Koyama and Kira can be extended into 
a "resource depletion" model of plant interference 
(Turner and Rabinowitz 1983). In such a model, plants 
grow exponentially, and they vary in their relative 
growth rates, acts to reduce the relative 
growth rates of all individuals by the same proportion. 
In doing so, it also reduces the variance in growth rates, 
and this reduces the variation in sizes which results from 
the growth rate differences. Plants experiencing compe- 
tition will simply grow the same way as plants which are 
not competing, only more slowly. For a given period of 
growth, this model predicts that plants at high density 
will be smaller and show a less unequal size distribution 
than plants at lower density. Competition is "two-
sided", and interference is like any other factor that re- 
duces plants' growth rates. 

There has been much confusion about the relation- 
ship between differences in plant size and differences in 
growth rate. It is true, of course, that plants attain what- 
ever size they have through a process of growth from a 
smaller size. But this does not mean that questions of 
size variation can be simply reduced to iuestions of 
growth rate. The term "relative growth rate" (RGR) 
has two very different meanings in biology, and they are 
often confused. In one usage, the term R G R  refers to 
the actual proportional increase in size over a given 
period of time: Observed RGRs are valuable deicrip- 
tors of plant growth. In its other use, R G R  is assumed 
to be constant and therefore an exponential model of 
growth is implied. Plant growth is exponential only in its 
earliest phase and the growth of individual plants is bet- 
ter modelled by asymptotic functions such as logistic, 
Richards or Gompertz equations (Hunt 1982). As in 
population growth theory,-exponential modelsare only 
valid under a relatively restrictive set of conditions or 
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for a relatively short period of time. It  is true that much 
variation in size within a population is the result of vari- 
ation in growth rates in the broad sense, but this does 
not seem to clarify the issue much if plant growth is not 
exponential. The generation of plant size distributions 
will ultimately be understood in terms of the utilization 
of resources. Resource utilization determines a plant's 
RGR,  and is influenced by the abiotic and biotic envi- 
ronment, the latter including effects of neighbors 
through specific mechanisms of interference. R G R  may 
be a useful descriptor of plant growth, but it is a result 
rather than a cause of growth. 

3.1.2. A "resource depletion" model with sigmoid 
growth 
Since plant growth is only exponential for a relatively 
short period and since modelling competition through 
reduction in exponential growth rates is somewhat ar- 
bitrary, it is reasonable to ask if similar results are ob- 
tained from a "resource depletion" model based on sig- 
moid growth of competing individual plants. One way 
to model growth and competition of individual plants 
based upon sigmoid growth is to use Lotka-Volterra 
competition equations. These were developed to model 
competing populations, (e.g. May 1981) but have also 
been used to model total production of plants in mono- 
cultures versus mixtures (Vandermeer 1981). In apply- 
ing the Lotka-Volterra equations to growth of indivi- 
duals, plants are viewed as populations of modules 
which grow logistically and interact through competi- 
tion coefficients which quantify the effect of each indi- 
vidual on every other individual. 

We have implemented such a model with a computer 
program. In implementing the model, we make the fol- 
lowing assumptions: 1) Each individual, in the absence 
of competition, grows logistically: dN/dt = rN (1-NIK) 
where N is the size or module number of a plant, r is its 
intrinsic rate of increase and K is its maximum size. 
Each of the parameters, r ,  K and No (initial size) are in- 
dependently distributed in a random, normal fashion 
within the population. We have used mean values of 
1.0, 10,000 and 1.0, respectively for these parameters 
and a coefficient of variation of 20% for each of them. 
2) When individuals are competing, the relationships 
between them are expressed through competition co- 
efficients, which quantify the effect of each individual 
on every other individual. For each individual, N,: 

where every individual is represented by an N,, ,, is 
the effect of individual j on individual i (= ,, is equal to 
1.0), and n is the number of individuals. The competi- 
tion coefficients also have an independent random nor- 
mal distribution with a mean of 1.0 and a CV of 20%. 
This insures that the "law of constant yield" is in effect, 
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200 'plants'_ _ _ _ _ _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _  
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Fig. 1. Effects of density on size inequality in a aresource de- 
p le t ion~ model based upon Lotka-Volterra dynamics. Initial 
sizes, relative growth rates, carrying capacities and competi- 
tion coefficients are all distributed independently in a random 
normal fashion with a coefficient of variation of 20%. (a) 
changes in mean plant weight over time; (b) changes in size in- 
equality over time; (c) relationship between mean plant weight 
and size inequality (see text). 
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i.e. increases in density (the number of populations of 
modules) will not result in increases in total yield. The 
plants cannot have negative growth rates and they main- 
tain whatever size they achieve (if the Lotka-Volterra 
equations result in dN,/dt < 0,  dN,/dt is set equal to  0). 

The effect of three densities (100, 200, and 300 
"plants") are shown in Fig. 1.At  higher densities, mean 
plant weight at equilibrium is lower (Fig. l a ) .  Size in- 
equality at equilibrium is also lower at higher densities 
(Fig. lb).  For a given mean plant size, higher density 
has higher inequality, but higher densities do not 
achieve high mean plant sizes (Fig. lc).  We have re- 
peated these simulations using different mean values for 
the parameters (including a lower mean competition co- 
efficient so that inter-individual competition will not be 
as severe as intra-individual competition). Increasing 
the number of competing individuals either decreases 
size inequality at equilibrium or  has no significant effect 
on it. This model is similar to the exponential "resource 
depletion" outlined above in that competition is "two- 
sided": it differs in that (1) plants are modeled by a sig- 
moid rather than an exponential growth function, and 
(2) the concept of competition is given more meaning 
through the use of carrying capacities and competition 
coefficients. We conclude that "two-sided" models of 
competition without mortality, whether exponential or 
sigmoid, predict lower o r  unchanged size inequality at 
higher density after a given period of growth. 

3.2. "Resource pre-emption" models of competition 

An alternative to "resource depletion" models of plant 
interference has been variously called "resource pre- 
emption", "one-sided competition", "asymmetric com- 
petition" (Begon 1984), and "dominance and suppress- 
ion". Such models assume that larger individuals are 
able to get more than their proportional share of re- 
sources based upon their relative size and grow "at the 
expense" (Harper 1977) of smaller individuals. Compe- 
tition does not reduce plant growth in the same way as 
other factors which reduce resource levels. One such 
model was developed by Aikman and Watkinson 
(1980). They used a modified Richards equation for in- 
dividual growth and a complex competition func- 
tion in which large plants have an advantage over small 
plants. In their competition function, the growth rate of 
individuals is (1) reduced as the total "area" covered by 
the population (defined as weight "') approaches the 
available area and (2) affected by the individual's rela- 
tive size within the population. Their model generated 
size distributions which are similar to those in Ford's 
(1975) experiments with Tagetes patula. Aikman and 
Watkinson's model differs from the Lotka-Volterra mo- 
del presented above in that a different sigmoid growth 
function is used and, more importantly, competition is 
"one-sided" in their model. Another "one-sided" model 
of plant interference was presented by Ford and Diggle 
(1981). 111 their model, competition occurs between in- 

dividual plants in space and is determined by differences 
in plant-height. Taller plants suppress the growth of 
shorter plants but not vice versa; thus their model is to- 
tally "one-sided". Their model generated bimodality in 
the heights of individuals in the population. Both Aik- 
man and Watkinson, and Ford and Diggle used their 
models to  ask questions about changes in the size distri- 
bution as a stand develops, but they did not discuss the 
effects of initial density on size distributions. Their for- 
mulations would be expected to produce higher in- 
equality at higher densities after a given period of 
growth (in the absence of significant mortality) since the 
"one-sided" interactions would begin sooner at higher 
density. "One-sided" models based on overlapping 
"zones of influence" (e.g. Gates 1982) do show in- 
creases in inequality with increases in density (Weiner, 
unpubl.). We conclude, on the basis of the available evi- 
dence, that "one-sided" models predict greater inequal- 
ity at higher densities after a given period of growth. 

3.3. Analytic versus mechanistic models of stand development 

Several powerful analytic methods for simulating 
changes in plant size distributions over time have been 
developed by Japanese researchers. Simulation models 
have been based upon distribution density functions 
(Hozumi et  al. 1968), finite difference equations (Ya- 
makura and Shinozaki 1980), and diffusion equations 
(Hara 1984a, b). These models can be fit to data and 
predictions can be made about stand development. 
Similarly, Westoby (1982) suggests that we look at 
changes in size distributions as the result of the oper- 
ation of "distribution modifying functions" (DMF's) 
acting upon size distributions. These are functions relat- 
ing the increment of a size measure to the same size 
measure across all individuals in the stand at a point in 
time. This approach assumes that growth rate in the 
presence of competition is primarily a function of rela- 
tive size and (if the DMF's are to  be tractable) that the 
relationship between growth rate and relative size does 
not change as plants grow. The flexibility of these meth- 
ods is such that they can be used to simulate many pos- 
sible dynamics of stand development, including "one- 
sided" or two-sided" competition. Thus they d o  not 
make specific predictions concerning the effect of den- 
sity on size variability. They represent analytic tools 
which can be used to analyze data and test theoretical 
models, but they are not explanatory theories. 

Hara (1984a, b) has developed stochastic analytic 
models of changes in plant size distributions based on 
the mean growth rate of individuals of the same size 
(G(t,x) function or DMF) and the variance in growth 
rate of individuals of the same size (D(t,  x) function). 
He has fit this model to data from experimental popu- 
lations of Helianthus annuus. His model shows increases 
in the coefficient of variation of size with time and with 
density (Hara, unpubl.). 

Questions of size distributions and interference must 



Tab. 1. The effect of density on size inequality in even-aged plant monocultures. Measures of inequality: Coefficient of Variation 
(CV); Gini Coefficient (G); Theil's Index (T). G has been calculated from published or raw data whenever possible; other meas- 
ures of inequality are those published. Ind. grown: each plant in its own container. 
+ G calculated from raw data provided by authors 
* G calculated from published data 

Species 	 Densities Max age (d) self- Results Notes Author & date 
(ind m-L) thinning? 

Linutn usitarissimum "maturity" ? 	 G increases with no sample sizes; Obeid et al. 
density at each frequencies do not (1967) 
harvest* add to 100% 

Lolium perenne 189 yes 	 CV increases with 
density and time 

Zea mays 130 no 	 CV increases with Edmeades and 
density at later Daynard (1979) 
harvests 

Plantago major 76 no 	 G incr with density' Fig. 2 Hawthorn and 
P. rugelii 	 <15% Cavers (1982) 

<7456 

Pisum sativum var "maturity" no G and CV increase 3 genotypes grown Hedley et al. 
"leafless" with density in all at 5 densities; Fig. 3 (1983); Ambrose 

12 cases* and Hedley 
(1984) 

Danthonia caespitosa ind. grown 122 no G and CV increase seeds from 4 Quinn and 
500 with density in 19 populations grown Hodgkinson 

1100 and 20 out of 24 under 3 temp. (1983) 
casesC regimes 

Festuca paradoxa 	 10000 41 no no trend in G with Rabinowitz 
20000 density* (1979) 
40000 
80000 

100000 

F. paradoxa ind. grou 	 G higher for ind Turner and 
80000 grown* 	 Rabinowitz 

(1983) 

Trifolium 160 no CV increase with Stern (1965) 
subterraneum no density after 90 days 

some 

Trifolium incarnatutn ind. grown 92 no G increase with 2 fertility levels Weiner (1985) 
Lolium multiflorum 200 no density in all 8 cases 

<20% 

Lychnis flos-cuculi 56 little or none 	 T increase with 2 fertility and 2 Andel et al 
density in all 4 cases moisture levels (1984) 

Urtica dioica ind. grown 91 no T higher with 
9 per pot some interference after 

63 days 

Helianthus annuus 67 yes 	 CV increases with Hara (1984b) 
density when self- Hara (unpub.) 
thinning is not 
occurring 

Picea sitchensis 21 years no 	 G correlated with trees thinned to Jack (1971) 
density (p<.05)* 	 different densities at 

11 years, data 
collected 9 years 
later 



eventually be reduced to questions of the mechanisms 
of growth and interference. Some mechanisms of inter- 
ference (e.g. some forms of root competition) may fit 
within the resource depletion model, whereas other 
competitive mechanisms (e.g. shading) may result in re- 
source pre-emption. A reductionist model for the gen- 
eration of plant size distributions should (1) describe the 
growth of individuals in terms of resource utilization in 
the absence of interference and (2) describe how the in- 
teractions between plants changes the growth of individ- 
uals through mechanisms of resource reduction, and 
other neighbor effects. Such models will provide the ba- 
sis for understanding and predicting observed relation- 
ships between competition and size inequality. 

4. Empirical studies 

The classical way of studying the effects of competition 
on plant populations is to look at the relationship be- 
tween mean plant weight and density. This relationship 
has been studied in two contexts: 

( I )  Density as the independent variable - the effect of 
density on mean plant weight. Populations are grown at 
different planting densities and, after a given period of 
growth, mean plant weights are compared. Several 
quantitative relationships have been described (re-
viewed by Harper 1977 and Watkinson 1980). 

(2) Time as the independent variable - correlated 
changes in mean plant weight and density as density-de- 
pendent mortality (self-thinning) occurs. Populations 
are harvested o r  measured at  different ages and the re- 
lationship between density and mean plant weight of 
survivors is studied. The self-thinning rule has been de- 
scribed, and its generality and theoretical basis have 
been debated (Yoda et  al. 1963, White and Harper 
1970, White 1980, Westoby 1984). 

Our goal is to extend these analyses to address the 
question of size variability. Taking a reductionist ap- 
proach, it seems reasonable to (a) study the effect of 
density on size distributions in the absence of self-thin- 
ning, and (b) study the relationship between self-thin- 
ning and size distributions. The ultimate goal is to build 
a comprehensive model which addresses both these is- 
sues. 

4.1. Density and size inequality 

With respect to specific hypotheses addressing the be- 
haviour of size distributions with changes in density, we 
conclude that models in which competition is symmet- 
ric, (i.e. in which a plant's ability to compete is propor- 
tional to its size, such as the Lotka-Volterra model pre- 
sented above) predict decreased or  unchanged inequal- 
ity with increased density. Models in which competition 
is asymmetric (e.g. Aikman and Watkinson 1980, Ford 
and Diggle 1981) predict increased inequality with in- 
creased density. 

While there are numerous agricultural and ecological 

studies in which density is the independent variable, size 
distribution data are available for relatively few. In re- 
viewing studies in which size distribution data have been 
published, we have encountered two major problems. 
First, inequality has not been calculated, and often the 
data are presented in a way which does not permit an es- 
timate of inequality to  be calculated. Many authors 
present size distributions as a specified number of equal 
size classes without units (e.g. Koyarna and Kira 1956, 
White and Harper 1970, Ford 1975, Bazzaz and Harper 
1976, Mohler et al. 1978). In these cases the raw data 
must be obtained and analyzed if inequality is to be esti- 
mated. Self-thinning poses a second-problem. Density 
dependent mortality is concentrated among the smallest 
individuals, and will reduce size variability and there- 
fore inequality (see Sect. 4.2 below). Since we are ob- 
serving the outcome of two opposing factors, it is impos- 
sible to assign exact roles to each factor. Thus. we limit 
ourselves t'studies in which density is the independent 
variable and in which mortality is less than 20%. 

Tab. 1 summarizes the results of sixteen experiments 
in fourteen studies in which density is an independent 
variable and for which size distribution data or size in- 
equality measures are available. In some cases the au- 
thors have calculated a measure of inequality (usually 
the Coefficient of Variation). Whenever possible we 
have calculated the Gini Coefficient from published his- 
tograms or, when authors have provided them to us, 
from the raw data. 

One of the most frequently cited studies on size dis- 
tributions and competition is Obeid et  al.'s 1967 study 
on flax. Their data for three densities and three harvest 
dates does show increases in inequality with density at 
each harvest. However, we must be cautious in inter- 
preting their results because their paper provides no 
sample sizes, no information on mortality and in only 
four of the nine size frequency distributions presented 
do the frequencies add up to between 96 and 100%. 
Still, such typographical errors are unlikely to  affect the 
general trend or their conclusions. Results of Hawtorn 
and Cavers (1982, Fig. 2) are typical. Despite mortality, 
which will tend to reduce inequality, inequality is higher 
at higher density. Hedley et al.'s (1983) results for "leaf- 
less" peas (Fig. 3) are of special interest. The size distri- 
butions of this variety are seen as one of its major 
agronomic advantages. The populations are not highly 
skewed and skewness does not increase with density. In-
equality, however, does increase with density. While 
the range of densities they studied is appropriate for the 
agronomic questions they are addressing, it would be 
considered narrow for an ecological study. 

Of the sixteen experiments cited in Tab. 1, fourteen 
show increases in inequality at higher densities. We 
must reject the hypothesis that interference acts like any 
other factor which reduces resource levels ("resource 
depletion"). From the point of view of a living, growing 
plant, resource reduction caused by another living, 
growing plant is very different from resource reduction 
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Fig. 2. Biomass distributions for experimental populations of 
(a) Plantago major and (b) P. rugelii grown at three densities. 
Density of survivors is in parentheses. G, is unbiased estimate 
of the Gini Coefficient (after Hawthorn and Cavers 1982). 

due to  abiotic factors. We conclude that density de- 
creases the overall growth rate of plants, but also in- 
creases the variance in growth rates. This is the outcome 
expected from asymmetric competition. 

The only results which d o  not show increasing in- 
equality with increasing density are those of Rabinowitz 
(1979) and Turner and Rabinowitz (1983) on Festuca 
paradoxa. The most notable difference between these 
and other studies is that the plants were grown for a 
relatively short period of time (41 and 44 d,  respec- 
tively). While interference is occurring in these studies 
(mean plant weight is lower at higher densities), compe- 
tition is probably for nutrients, since the plants would 
probably not be large enough to shade one another. 
Weiner (1985) suggests that the resource depletion mo- 
del may apply when competition is not for light. and this 
may be the case when plants are grown for very short 
periods. Later, when competition for light develops, 
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dominance and suppression occur. The results of Andel 
et al. (1984) on Urtica dioica are illuminating in this con- 
text. They compared inequality in individually grown 
and competing individuals a t  five harvest dates. In-
equality was higher for individually grown plants after 5 
and 7 wk, but inequality was higher for interfering 
plants after 9, 11 and 13 wk. Thus early plant interfer- 
ence appears to  behave according to the resource deple- 
tion model, whereas later plant interference results in 
dominance and suppression. Turner and Rabinowitz 
suggest that the absence of dominance and suppression 
in F: paradoxa may be due to the graminoid growth 
form, but dominance and suppression are observed in 
the studies on grasses by Edmeades and Daynard 
(1979), Quinn and Hodgkinson (1983) and Weiner 
(1985). Plant growth form may influence size variabil- 
ity: if dominance and suppression result from competi- 
tion for light, then we wduld expect growth forms ;hich 



k density = 100 152 

ln- -S 
u.-
> 
' .- lo-

density = 204 ni2 

Gu = 0.217 

.,-
0 -
L 
Q 
n 
E O 

I I I 

plant biomass (g) 

Fig. 3. Biomass distributions for populations of the nleaflessa 
genotype of Pisum sativum grown at three densities. G , is unbi- 
ased Gini Coefficient (after Hedley et al. 1983). 

result in quicker and/or more extensive shading of indi- 
viduals by others to result in competition which is more 
one-sided. Thus we might expect grasses to be less 

0'2I *o% mortality 

prone to dominance and suppression than broad-leaved 
plants. But when competition for light does occur, i.e. 
when the canopy is closed and the community is close to 
its maximum leaf area index, dominance and suppress- 
ion will occur. While competition for light may not have 
been a significant selection pressure in the evolution of 
certain growth forms, growth form cannot prevent dom- 
inance and suppression from occurring when plant size 
and density make light a limiting factor. Growth form 
may thus affect the extent, but not the existence, of the 
asymmetry. 

4.2. Self-thinning and size inequality 

Predictable changes in size distributions may accom-
pany self-thinning (Mohler e t  al. 1978, Weiner 1985). 
Asymmetric competition and other factors will contin- 
ually generate and exaggerate size differences, but mor- 
tality of the smallest individuals will reduce size variabil- 
ity. Mohler et al. (1978) found that skewness is greatest 
at the onset of self-thinning and decreases as mortality 
proceeds. The Coefficient of Variation of sizes goes 
down during self-thinning in wave-generated Abies 
stands in Japan (Kohyama and Fujita 1981). Analysis of 
Ford's 1975 data on Tagetespatula (Fig. 4) also supports 
this hypothesis. Size inequality increases before mor- 
tality is extensive, then decreases as mortality proceeds. 

The only data on size distributions during extensive 
self-thinning are for coniferous forests. The first of 
these are the huge data sets on Pinus ponderosa col-
lected in the 1930's by Meyer, which have been ana-
lyzed by White (1980) to study self-thinning. The data 
consist of predicted diameter distributions for stands of 
numerous ages on sites of differing productivities ("site 
indices") over vast areas of the western U.S. Although 

mean plant weight (g) mean volume (m3tree-') 

Fig. 4. Changes in Gini Coefficient with mean plant biomass Fig. 5 .  Size distributions for even-aged stands of Pinus ponde- 
for sequential harvests (2 .4 ,6  and 8 wk) of experimental popu- rosa of site index 80. Numbers are stand ages in years (from J. 
lations of Tugetes parula (after Ford 1975). White, unpublished, data from Meyer 1938). 
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Fig. 6. Changes in the Gini Coefficient with age in even-aged 
stands of Pinus ponderosa. Numbers refer to the "site quality 
index" (data from Meyer 1938). 

Meyer's data are predicted values based on a visual 
curve fitting procedure which is not clearly described in 
his paper, the unequalled volume of data, the care with 
which they were collected, and the fact that his curve- 
fitting could not have been influenced by recent models 
such as those we are investigating, make his data sets 
valuable resources. Fig. 5 shows size distributions (log 
scale) for some of these stands of site index 80. White 
(1980) has studied self-thinning in these stands; the 
slope of the log mean stem volume versus log density re- 
lationship is -1.50. The Gini Coefficient decreases as  
mean stem volume increases and density decreases. The 
rate of decrease in G in Meyer's P. ponderosa stands is 
faster in the more productive stands (Fig. 6). This is a 
result of the "Sukatshew effect" (Harper 1977) in which 
self-thinning proceeds more quickly in more productive 

mean volume (m3 tree") 
Fig. 7. Relationship between the Gini Coefficient and mean 
plant weight for 58 stands of Pinw ponderosa of different ages 
and on different quality sites. The least square linear re-
gression for the linear portion of the graph is y = 1.04- 0.208 
log x (data from Meyer 1938). 

density (trees mW2) 
Fig. 8. Self-thinning in 31 wave-regenerated stands of Abies 
bulsamea in the Northeastern United States. Thc slope of the 
log mean plant weight vs. log density relationship is -1.24 (un- 
published data from D. Sprugel). 

stands. When the Gini Coefficient is plotted against log 
mean stem volume (Fig. 7) for all of Meyer's stands, a 
linear relationship between log mean plant weight and 
G develops. The slope of this line is -0.21. This is es- 
pecially interesting in view of the fact that these stands 
represent different ages and site qualities and do not 
even have the same self-thinning trajectories (Westoby 
1984). Surprisingly similar results are obtained from 
data on 31 wave-generated Abies balsamea forests 
(Mohler e t  al. 1978, Sprugel 1984, Sprugel, unpubl.). 
These stands show self-thinning with a slope of -1.24 
(Sprugel 1984, Fig. 8). G increases with log mean plant 
weight until self-thinning is extensive, then decreases 
(Fig. 9). The slope of this decrease is -0.195 which is 
very close to the slope for Meyer's Pinus ponderosa 
stands. The theoretical basis for this is yet obscure. Just 
as there are quantitative relationships between mean 
plant weight and density (self-thinning trajectories), 
there are also quantitative relationships between mean 
plant weight and other aspects of the size distribution, 



mean plant weight (kg) 
Fig. 9. Relationship between the Gini Coefficient and mean 
plant weight for Abies balsamea stands. The least square linear 
regression for the descending portion of the graph (excluding 
the five smallest mean plant weights) is y = 0.68 - 0.195 log x 
(unpublished data from D. Sprugel). 

such as inequality. Size inequality appears to  increase 
until the onset of self-thinning, then decreases as self- 
thinning progresses. 

The observation that size inequality decreases during 
self-thinning is consistent with the hypothesis that com- 
petition asymmetry and self-thinning are due to shad- 
ing. Before plants compete for light they are able to ac- 
quire resources, including light, in proportion to some 
aspect of their size. When the canopy closes, plants 
begin to shade each other. Larger plants get more than 
their share of the light resource. An individual which is 
half the size of its neighbors will not be able to  get half 
the amount of solar energy, but it may be able to get 
enough light to survive and grow. After the communi- 
ty's leaf area index has reached its maximum, plants 
continue to grow although community photosynthesis 
cannot increasc further. When the plants are large, it 
m a  be impossible for an individual which is half the 
size of its neighbors to get sufficient light to survive. For 
a given density, proportionately smaller individuals will 
get a smaller proportion of the available light when 
mean plant size is large than when it is small. Because of 
the two dimensional nature of the light resource and the 
three dimensional nature of competition for it, a greater 
degree of relative size variation can be tolerated when 
mean size is small than when mean size is large. In a 
stand of large trees with a fully closed canopy, small in- 
dividuals may get very little light, unless they are lo- 
cated near canopy gaps. According to this view, we 
would cxpect size inequality to decrease after the leaf 
area index reaches its maximum, as observed. 

U'e conclude that current theory is inadequate to de- 
scribe or predict the interaction between plant growth, 
interference and size distributions. Future model build- 
ing should be based on resource utilization of individual 

plants, which is changed in predictable ways by interfer- 
ence and determines the distribution of growth and 
death within a population. A comprehensive theory 
which explains the relationships between the growth of 
individual plants, density-yield relationships, size distri- 
butions, and self-thinning is waiting to  be uncovered. 
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