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abstract: Patterns of size inequality in crowded plant populations
are often taken to be indicative of the degree of size asymmetry of
competition, but recent research suggests that some of the patterns
attributed to size-asymmetric competition could be due to spatial
structure. To investigate the theoretical relationships between plant
density, spatial pattern, and competitive size asymmetry in deter-
mining size variation in crowded plant populations, we developed a
spatially explicit, individual-based plant competition model based on
overlapping zones of influence. The zone of influence of each plant
is modeled as a circle, growing in two dimensions, and is allome-
trically related to plant biomass. The area of the circle represents
resources potentially available to the plant, and plants compete for
resources in areas in which they overlap. The size asymmetry of
competition is reflected in the rules for dividing up the overlapping
areas. Theoretical plant populations were grown in random and in
perfectly uniform spatial patterns at four densities under size-asym-
metric and size-symmetric competition. Both spatial pattern and size
asymmetry contributed to size variation, but their relative impor-
tance varied greatly over density and over time. Early in stand de-
velopment, spatial pattern was more important than the symmetry
of competition in determining the degree of size variation within
the population, but after plants grew and competition intensified,
the size asymmetry of competition became a much more important
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source of size variation. Size variability was slightly higher at higher
densities when competition was symmetric and plants were distrib-
uted nonuniformly in space. In a uniform spatial pattern, size var-
iation increased with density only when competition was size asym-
metric. Our results suggest that when competition is size asymmetric
and intense, it will be more important in generating size variation
than is local variation in density. Our results and the available data
are consistent with the hypothesis that high levels of size inequality
commonly observed within crowded plant populations are largely
due to size-asymmetric competition, not to variation in local density.

Keywords: asymmetric competition, individual-based models, pop-
ulation structure, size inequality, spatial effects, zone of influence.

Competition among individuals usually increases size var-
iation within plant populations, but there is controversy
over the mechanisms through which this occurs. This con-
troversy reflects a fundamental disagreement about the
nature of competition among individual plants. Some
studies have concluded that a major factor generating size
variation in crowded plant populations is the “size asym-
metry” of competition: larger plants have a dispropor-
tionate advantage (for their relative size) in competition
with smaller plants, suppressing their growth (Begon 1984;
Weiner 1990; Schwinning and Weiner 1998). In simple
models, increases in size inequality with density are ob-
served only when competition is size asymmetric (Weiner
and Thomas 1986), so the commonly observed increase
in size inequality in populations grown at higher densities
has been considered evidence in support of the hypothesis
of size-asymmetric competition (Weiner 1990).

Other researchers have argued that the importance of
size-asymmetric competition has been exaggerated, and its
existence has even been questioned (Turner and Rabi-
nowitz 1983; Bonan 1991). Other phenomena, such as
variation in exponential growth rates and variation in local
crowding, might explain the patterns of size variation that
have been attributed to size-asymmetric competition, such
as the higher size inequality observed at higher densities.
In spatially explicit models in which competition is local
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and individuals are growing in a random spatial pattern,
variation in local crowding will generate variation in size,
and this variation can increase at higher densities. For
example, at very low densities there may be no compe-
tition, and plants will vary in size as a result of other
factors. At somewhat higher densities, some plants will be
competing (and therefore smaller) whereas others will not.
This will result in greater size variation at this higher den-
sity, even if competition among competing individuals is
completely size symmetric (Huston 1986; Miller and Wei-
ner 1989).

Bonan (1991) took this argument farther, arguing that
the higher size variability of plant populations grown at
higher densities is not a reflection of competitive size
asymmetry at all but rather of variation in local crowding,
which exists because plants rarely grow in a uniform spatial
pattern. In Bonan’s spatially explicit model, size inequality
increased with density under both symmetric and asym-
metric competition when the spatial pattern was not uni-
form. He concluded that the commonly observed increase
in plant size inequality at higher densities is not strong
support for the existence of asymmetric competition.

To investigate the theoretical relationships between plant
density, spatial pattern, and competitive asymmetry in de-
termining size variation in crowded plant populations, we
developed a spatially explicit, individual-based plant com-
petition model based on overlapping zones of influence
(Gates and Westcott 1978; Wyszomirski 1983). “Zone of
influence” (ZOI) models, in which plants grow, occupy
space, and compete for resources distributed in areas they
overlap, are appealing because they are semimechanistic
and conceptually simple, and they seem to capture some
essential aspects of spatial competition among individual
plants. ZOI models have other appealing attributes; since
the definition of who is and who is not a neighbor falls
directly out of the assumptions and behavior of the model,
ZOI models avoid the problem of defining a “neighbor-
hood size” (Stoll and Weiner 2000). Also, unlike many
simulation approaches such as cellular automata (see, e.g.,
Ermentrout and Edelstein-Keshet 1993) or coupled lattice
(Hendry et al. 1996) models, theoretical plants in ZOI
models, like real plants, can grow over many scales, and
their interactions scale accordingly. Finally, by making pre-
dictions concerning the influence of specific factors such
as density, pattern, and mechanisms of competition on
plant size distributions, ZOI models can be testable in a
way that most general ecological models have not been
(Weiner 1995).

Although conceptually simple, ZOI models are difficult
to implement, except in the one-dimensional case, where
space is represented by a line and competing plants are
represented by overlapping line segments, or when two-
dimensional individuals are uniformly spaced and overlap

only with their nearest neighbors (Gates and Westcott
1978; Gates et al. 1979; Gates 1982). Development of one-
dimensional ZOI models was pioneered by Wyszomirski
(1986; Hara and Wyszomirski 1994). Wyszomirski (1986)
showed that the size distributions produced by a ZOI
model were similar to those of real plant populations, and
his results emphasized the role of local spatial variation in
generating plant size variability. Wyszomirski’s original
simulations did not include size-asymmetric competition,
but a later study did (Hara and Wyszomirski 1994). It
showed that spatial pattern was important in determining
size variation when density was low and competition sym-
metric, but at higher density and asymmetric competition,
spatial arrangement was much less important. Using a one-
dimensional ZOI model, Yastrebov (1996) demonstrated
that symmetric competition leads to a type of stagnation,
in which plants stop growing but do not die, whereas
asymmetric competition results in growth of some plants
and death (self-thinning) of others. He concluded that size
asymmetry results in a more dynamic system.

Two-dimensional ZOI models have also been developed,
originally for measuring interindividual competition in
forest trees (Opie 1968; Bella 1971) and later as simulation
models (Gates and Westcott 1978; Gates et al. 1979; Gates
1982; Wyszomirski 1983; Bonan 1988, 1991, 1993; Miller
and Weiner 1989). Gates’s ZOI model of tree plantations
examined the effects of density and different degrees of
competitive asymmetry in a uniform spatial pattern.
Gates’s model accounted for observed changes over time
in the skewness of distribution of diameters in Pinus ra-
diata plantations when competition was size asymmetric.
Miller and Weiner (1989) investigated the effects of spatial
pattern, density, and size asymmetry on size variation in
a completely two-dimensional ZOI model. Size inequality
increased with density if the spatial distribution of plants
was random, but in the case of symmetric competition,
this increase only occurred over a range of relatively low
densities. Above a certain density, size inequality only in-
creased with density if competition was asymmetric. In
Bonan’s (1991) model, size inequality was higher at higher
densities for both modes of competition if the spatial pat-
tern was not uniform. He concluded that “increased size
variability [at higher densities] does not distinguish be-
tween symmetric and asymmetric resource distribution …
[but is] a direct manifestation of neighborhood compe-
tition” (Bonan 1991, p. 345).

Overall, two-dimensional ZOI studies to date have ex-
plored very small regions of the biologically relevant pa-
rameter space and have presented results for only a single
point in time, which can give a distorted impression of
the dynamic processes of stand development (Wyszomirski
et al. 1999). Advances in computing technology and clar-
ification of some of the central theoretical questions allow
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us to make more informative simulation studies. The ques-
tion that emerges is, simply, what are the theoretical in-
teractions between plant density, spatial arrangement, and
size asymmetry of competition in determining variation
in plant size during population development in a two-
dimensional ZOI model?

Model

In our ZOI model, plants grow as circles in two dimensions
and can be thought of as ellipsoids in three dimensions.
The area a plant occupies, A, represents resources poten-
tially available to the plant and is allometrically related to
the plant’s biomass, B, as . A plant’s potential2/3A p cB
growth, that is, its growth if there are no neighbors, is
sigmoidal. Our criteria for selecting a growth equation
were as follows: first, the positive term in the growth equa-
tion should be proportional to the resources available to
the plant, which we assume scales with the area occupied;
second, in the absence of competition, the equation should
produce sigmoidal growth in biomass similar to that ob-
served in plants; and third, the equation should be as
simple as possible, with each parameter having a clear
biological interpretation. Of the various functions that fit
these criteria, we chose

2 2dB B B
2/3p r A � p r cB � , (1)

4/3 4/3( ) ( )dt B Bmax max

where Bmax is the maximum (asymptotic) plant mass, r is
the initial (maximum) growth rate in mass per unit area
occupied (in units of mass area�1 time�1), and t is time.
The gain term is proportional to area occupied (as sup-
ported by West et al. [1999]), while the loss term is pro-
portional to biomass squared as in the widely used logistic
growth equation (Hunt 1982). Because we focus on the
early stages of stand development, growth in our simu-
lations is dominated by the gain term.

When plants overlap, they compete for resources in ar-
eas of overlap. The effective area of a plant (Ae) is the area
it covers (A) minus that part of the area lost to neighbors
(An). Ae determines the realized growth rate of the plant
during the next time interval:

2dB B
p r A � . (2)e 4/3( )dt Bmax

For simplicity in analyzing and interpreting the results,
plants cannot have negative growth rates but continue to
live and maintain the maximum size they achieve. Plants
were grown in random and perfectly uniform spatial pat-

terns. There is random normal independent variation in
initial sizes (B0), initial relative growth rates (r), and as-
ymptotic sizes (Bmax).

The size asymmetry of competition is reflected in the
rules for dividing the overlapping areas among the com-
petitors. The extreme case of “complete size asymmetry”
(Schwinning and Weiner 1998) occurs when the larger
individual obtains all the resources in the area of overlap.
There are several possible types of more size-symmetric
interactions (Gates et al. 1979; Wyszomirski 1986). Pos-
sibilities include dividing the area of overlap equally or in
proportion to the relative sizes of the contestants. The
question for the theoretical plant ecologist is, Which of
these is the most biologically reasonable definition for size
symmetry? Size asymmetry is usually defined in terms of
plant size and overall resource division. If plants obtain
resources in proportion to their size, this is considered to
be size-symmetric competition, whereas if larger plants
obtain a disproportional share of the resources (for their
relative size), competition is considered size asymmetric
(Schwinning and Weiner 1998). In a spatially explicit ZOI
model, only resources in regions of overlap are contested;
plants do not have access to, and therefore cannot compete
for, resources beyond their zones. Thus, the usual defi-
nitions of size symmetry based on whole-plant resource
acquisition or whole-plant competitive effects cannot be
applied directly to a ZOI model, so we must look at the
relevant biological principles. Schwinning and Fox (1995)
argued that perfect size symmetry means equal uptake of
resources per unit size. Similarly, Connolly and Wayne
(1996) defined symmetry as equal competitive effects per
unit size. According to this line of reasoning, symmetry
in a ZOI model should mean that larger plants have no
advantage per unit size within contested regions. There-
fore, we define symmetry as the equal division of resources
within areas of overlap. If two or more plants are over-
lapping the same area, resources in that area are divided
equally among them, independent of their relative sizes.

This conservative definition of size-symmetric compe-
tition in a ZOI model is supported by the mathematics of
overlapping circles of different sizes. When a large and a
small circle overlap, the larger has a smaller percentage of
its area in the region of overlap than does the smaller circle
(Schwinning and Weiner 1998). Therefore, if the area of
overlap is divided equally between them, the larger circle
loses less of its area. Thus, there appears to be an inherent
size asymmetry in a ZOI model, although this advantage
may be counteracted when many plants are competing
because larger plants will tend to overlap more neighbors
than smaller plants. Dividing areas of overlap equally
among all overlapping plants, and thus restricting the size
advantage to the inherent advantage of being larger, is most
consistent with the concept of symmetric competition as
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discussed in the recent literature. Equal division of con-
tested resources is also the most symmetric of the alter-
natives, so that the results for less size-symmetric rules for
dividing overlaps will lie between the results for this type
of symmetry and those for totally asymmetric competition
(Bonan 1988, 1991).

Methods

Because of the difficulty in analytically calculating areas
overlapped by more than four circles, we used a discrete
approximation of continuous two-dimensional space. In
our implementation, space is divided into a fine grid. If
the center of a grid cell is within a plant’s area, the grid
cell is considered to be covered by the plant; each grid cell
can be covered by an unlimited number of plants. Runs
presented below were performed with a grid of 25,000
cells. We performed tests of the sensitivity of the model
to grid size and found the results to be robust. It is not
clear how published studies have addressed this problem,
and it is likely that the number of plants overlapping any
point in space has been restricted in most or all previous
studies.

Our model is similar to Bonan’s (1988, 1991) but differs
in the following respects: first, we use a discrete approx-
imation of space (Bonan does not provide details on the
implementation); second, we take a “wraparound” (torus)
approach to avoiding edge effects rather than the “linear
expansion factor” used by Bonan; and third, we use a
different growth function. Also, Bonan created a “control”
case in which competition was equal for all plants by set-
ting the area lost to neighbors equal for all plants, whereas
we consider the perfectly uniform pattern as the appro-
priate control for the comparison with the random spatial
pattern. We also shift and expand greatly the parameter
space investigated, although we still focus on the initial
stages of stand development, during which plants are far
from their asymptotic sizes. In Bonan’s (1988) original
study, density was not varied and was relatively low, such
that competition was weak. In his second study (Bonan
1991), density was varied, but results were presented only
for one point in time. Since competition increases in in-
tensity as plants grow at a given density, we emphasize the
changes that occur over time (Westoby 1982; Wyszomirski
et al. 1999).

We assign conventional units to measures of mass and
area for ease of interpretation; however, these units are
essentially arbitrary and should not be taken literally. In-
itial masses (B0) were distributed normally with a mean
of 1.0 mg and a standard deviation of 0.1. Maximum size
(Bmax) was 20,000 mg with a standard deviation of 2,000.
The area, A, of each plant (in cm2) was set equal to its
mass, B (in mg), raised to the 2/3 power; thus, initial plant

areas averaged 1.0 cm2 and maximal plant areas averaged
159 cm2. The virtual plot on which simulations took place
had an area of 10,000 cm2 (with grid cells of size 0.2 cm2).
Initial (i.e., maximum) growth rates (r) were distributed
with a mean of 1.0 mg cm�2 time step�1 (where the area
is the effective area from which the plant is able to draw
resources) and a standard deviation of 0.1. Theoretical
populations were grown for 30 time steps at four densities,
100, 506, 992, or 4,970 plants m�2; in two spatial patterns,
random or uniform (approximately hexagonal); and with
two modes of competition, size symmetric or size
asymmetric.

The uniform spatial pattern deviated from perfectly hex-
agonal to accommodate a square plot; neighbors in one
direction were up to 13% closer than neighbors in the
other two directions. The pattern is perfectly uniform since
all plants experienced exactly the same configuration of
neighbors and is therefore an appropriate control for spa-
tial variation. For simplicity, we present extensive data for
only two of the densities, 100 (“low”) and 992 (“high”).

We also investigated one case of “partial size asym-
metry,” in which areas of overlap are divided in proportion
to the relative biomasses of the overlapping individuals.
As expected, the results were intermediate between size
symmetric and asymmetric, and, in the interests of brevity,
we do not present them here.

The output of the model consists of the sizes and lo-
cations of all the individual plants over time (see fig. 1).
We analyzed the distribution of individual masses, the be-
havior of mean mass and size inequality (coefficient of
variation [CV] of mass), and the relationships between the
size of individuals at the beginning of a size interval and
their growth over the interval. Such relationships, which
have been called “distribution modifying functions” (Wes-
toby 1982), “ ” functions (Hara 1984), or simplyG[t, x]
“growth-size relationships” (Weiner 1990), describe how
a size distribution changes over time.

To test the effects of initial conditions and stochastic
variation on the results, selected model runs were repeated
10 times with different random number seeds. Variation
among such “replicates” was so small that replication of
the remaining runs was deemed unnecessary.

The complete code of our model (in C) is available on
the Web at http://www.ecol.kvl.dk/admin/php3/research-
bot.php3. The program is menu-driven and thus user-
friendly, and we invite researchers to use it for further
studies.

Results

Mean Size

After 20 time steps, there was still no competition at the
lowest density in the uniform pattern, whereas competi-
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Figure 1: Subplots at and 20, at low (100) and high (992) density, growing under asymmetric and symmetric competition, in random andt p 10
uniform patterns. Plants with growth rate of 0 are shown with a dashed outline.

tion was quite intense at high densities (fig. 1). Mean mass
was lower at higher densities and slightly lower in a ran-
dom than in a uniform pattern (fig. 2). Mean mass was
also slightly lower under symmetric than asymmetric com-
petition, and this effect increased with time and at higher
densities.

Size Inequality

Size inequality (CV of mass) was higher when competition
was asymmetric than when it was symmetric and higher
in a random than in a uniform spatial pattern (fig. 3A,
3B). Size inequality increased strongly with density when
competition was asymmetric and increased when com-
petition was symmetric and the spatial pattern was ran-
dom. When competition was symmetric and the spatial
arrangement uniform, size inequality decreased slightly
with density (fig. 3A, 3B).

At low densities and early in growth, spatial pattern
played a more important role than size asymmetry in gen-
erating size variability (fig. 3A), but at high densities or
after longer periods of growth, the size asymmetry of com-
petition was more important than spatial pattern (figs. 3,
4A). At high densities or after a longer period of growth,
the contribution of spatial pattern to size inequality, that
is, the difference in CV between a uniform and a random
pattern, was greater under symmetric than under asym-
metric competition if the comparison is made at the same
point in time (fig. 4A). But the absolute contribution of
spatial pattern to size variation was very similar for sym-
metric and asymmetric competition when populations are
compared at the same mean plant biomass (fig. 4B). The
relative contribution of spatial pattern to size variation
decreases with time and density as the asymmetry of com-
petition comes to dominate the generation of size variation
(figs. 3, 4A).
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Figure 2: Mean plant mass over time for theoretical plant populations growing in uniform (circles) and random (triangles) patterns, under size-
symmetric (open symbols) and size-asymmetric (filled symbols) competition, at low (100 plants; large symbols) and high (992 plants; small symbols)
density.

Size Distributions and Growth-Size Relationships

When competition is asymmetric, small plants that are
covered by larger neighbors do not grow at all, and a lower
tail or mode of individuals that are not growing develops
(fig. 5L–5P). After asymmetric competition became in-
tense, size variation increased steeply (fig. 4A). Under sym-
metric competition, all plants grew more slowly, but all
plants grew somewhat if any grew.

The relationships between size at a given point in time
and subsequent growth were very different for symmetric
and asymmetric competition, and this difference increased
with time (fig. 6). When plants are in the early stages of
growth and there is no competition, growth is an ap-
proximately linear function of size (fig. 6A, 6I) because
variation in both size and growth are determined primarily
by variation in r and because both have the same depen-
dence on r. In a uniform pattern at high density, the slope
of this relationship is reduced by competition, but it re-
mains approximately linear (fig. 6C, 6D). In a random
pattern with symmetric competition, the growth-size re-

lationship curves upward slightly, and variation in growth
rate increases with increasing size (fig. 6G, 6H). Asym-
metric competition generates a large number of nongrow-
ing plants and a group of large plants that are not affected
by competition (fig. 6K–6P). Spatial pattern affected
growth-size relationships when competition was symmet-
ric, but its influence under asymmetric competition de-
creased over time; later in stand development, growth-size
relationships under asymmetric competition look similar
for both spatial patterns (fig. 6L, 6P).

Discussion

Density, spatial pattern, and the degree of size asymmetry
all affect the amount of size variation in our theoretical
plant populations. These factors interact such that their
relative contributions to population size variability vary
greatly within parameter space and over time as individuals
grow and compete.
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Figure 3: Coefficient of variation of mass versus density at (A) and 20 (B) for theoretical plant populations growing in uniform (circles)time p 10
and random (triangles) spatial patterns, with size-symmetric (open symbols) and size-asymmetric (filled symbols) division of overlapping zones of
influence.

General Effects of Spatial Pattern and the Degree of
Size Asymmetry on Size Variation

As intuition suggests, and as previous studies have dem-
onstrated, competitive asymmetry will always increase size
variation over what it would be under more symmetric
competition because if competition is asymmetric, large
plants suppress the growth of their smaller neighbors, in-
creasing size differences. The effect of asymmetry on size
variation increases with the intensity of competition (i.e.,
at higher density or larger mean plant size). When asym-
metric competition becomes very intense, only larger
plants can continue to grow, while their smaller neighbors
are completely suppressed (fig. 6). It is not always appre-
ciated that in the theoretical case of completely size-
asymmetric competition, the very largest plants do not
suffer competition at all; they grow exactly as they would
with no neighbors at all. This may be rare in nature, al-
though there is some evidence that it can occur (Thomas
and Weiner 1989a, 1989b).

Size variation is always higher when plants are growing
in a random as opposed to a uniform pattern, but the
strength of this effect varies within the parameter space
we explored (discussed below). Many of the effects of spa-
tial pattern in the model are due to differences in the onset
and development of competition. In a uniform spatial pat-
tern, all plants grow without any competition for an initial
period of time, and then competition commences for all
plants over a short period (fig. 1, third column). In a
random pattern, competition begins immediately for some
individuals, whereas other individuals may grow for a rel-
atively long period without experiencing competition (fig.
1, first column). Thus, a uniform pattern results in in-

creased biomass (fig. 2) since plants grow without com-
petition for as long as possible, and the ground is covered
as quickly as possible (fig. 1, third column).

In a ZOI model in which plants are still in the early
phase of growth, the effect of density is similar to the effect
of time, the difference being primarily one of scale. This
can be observed by the similar effects of density (fig. 3A)
and time (fig. 4A) on size variation. Plant density is only
meaningful in relation to mean plant size. Raising the
density increases the overall intensity of competition, de-
fined as the reduction in mean performance due to neigh-
bors, as does increased plant size at a given density. The
behavior of the model at high density is very similar to
its behavior at low density at a later period of time, when
mean plant size is much larger. Many phenomena are
better analyzed in terms of mean plant size than in terms
of time, although most experimental data are collected
after a given period of time.

Interactions between Density, Spatial Pattern,
and Competitive Symmetry

Our results support the hypothesis (Wyszomirski 1986)
that spatial pattern can contribute to the increase in size
variation observed at higher densities and that symmetric
competition among plants distributed nonuniformly in
space can produce patterns that have been attributed to
asymmetric competition (Miller and Weiner 1989; Bonan
1991). For example, a growth-size relationship with an
increasing slope, usually considered evidence for asym-
metric competition (Weiner 1990), can occur under sym-
metric competition if spatial pattern is not uniform (fig.
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Figure 4: Size inequality (coefficient of variation) versus (A) time and (B) log mean mass for theoretical plant populations growing in uniform
(circles) and random (triangles) patterns, under size-symmetric (open symbols) and size-asymmetric (filled symbols) competition, at a low (100 plants;
large symbols) and high (992 plants; small symbols) density. The sequence of points reflects intervals of two steps in the model, from tot p 0

.t p 30

6G, 6H). Similarly, increased size variation in populations
grown at higher density, usually considered evidence for
competitive asymmetry, can occur under symmetric com-
petition when the spatial pattern is nonuniform (fig. 3A).
This effect appears to be weak, however, and becomes even
weaker at higher densities and later in growth (fig. 3B).

By reducing the growth rates of competing plants in a
somewhat equal way, symmetric competition will tend to
reduce the divergence in sizes generated by variation in
initial growth rates (Koyama and Kira 1956; Wyszomirski
et al. 1999). Thus, in nonspatial models (see, e.g., Weiner
and Thomas 1986) or in a uniform pattern (fig. 3), in-
creasing the density results in smaller, more equally sized
plants. When the spatial pattern is not uniform, some
plants will begin competing with their neighbors before
others. Even if this competition is symmetric and makes
those early-competing plants smaller and more equal to
each other, it will increase the difference in size between
them and those plants that are not yet experiencing com-
petition (Miller and Weiner 1989). It is this variation in
the onset and development of competition that increases
size variation under symmetric competition. At higher
densities, this variation in local competitive environments
starts earlier, and resulting differences are propagated
longer, which results in greater size variation at higher
densities under symmetric, as well as asymmetric, com-
petition. The inherent asymmetry of a ZOI model at the
individual level, discussed in the “Model” section, could
also play a role.

When symmetrically competing plants are uniformly

distributed in space, size variation is lower at higher den-
sities (fig. 3). Thus, our results suggest that observed in-
creases in size variability at higher densities provide strong
support for the hypothesis that competition is asymmetric
if the spatial pattern is uniform. Many of the experiments
showing increased size variation at higher densities have,
in fact, been performed on populations that were hyper-
dispersed for experimental purposes (see, e.g., Edmeades
and Daynard 1979; Weiner 1985).

Spatial effects are relatively important when competition
is symmetric and/or weak (see, e.g., Stoll et al. 1994), but
spatial effects become less important when competition is
strong and highly asymmetric (Hara and Wyszomirski
1994). Spatial arrangement is less important when com-
petition is strongly asymmetric because larger plants will
dominate their smaller neighbors when they begin to com-
pete, irrespective of the exact distance to or number of
the smaller neighbors. After competition begins in an
asymmetrically competing population, the size variation
generated by asymmetry develops very quickly, and this
size variation approaches that of a randomly distributed
asymmetrically competing population (fig. 4A).

The effects of the spatial pattern on size variation are
reduced under asymmetric competition because the dis-
tribution of growing plants in the uniform pattern be-
comes nonuniform as some plants are completely sup-
pressed (fig. 1), whereas the spatial distribution of growing
plants in a random spatial pattern becomes more uniform
with time (P. Stoll, unpublished results), as observed in
plant populations during the process of self-thinning



446

Figure 5: Size distributions for populations growing at low (100; left half ) and high (992; right half ) density, in uniform and random spatial patterns, under symmetric (A–H) and asymmetric
(I–P) competition at and (left and right column within each density). Plants with growth rate of 0 are shown as gray bars.t p 10 t p 20
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Figure 6: Change in mass (absolute growth rate) over the period to and to , versus size at and 20, respectively, for plants grown at low (100) and high (992)t p 10 t p 12 t p 20 t p 22 t p 10
density in uniform and random spatial patterns, under symmetric (A–H) and asymmetric (I–P) competition.
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(Kenkel 1988). Under symmetric competition, all individ-
uals can grow somewhat if any can grow, so spatial pattern
always plays a role.

Reassessing the Role of Local Spatial Pattern in
Generating Plant Size Variation

Neither our results nor the available empirical data support
the great emphasis that some theoreticians have placed on
the role of small-scale spatial pattern in generating size
inequality among competing plants (e.g., Huston and
DeAngelis 1987; Bonan 1991). Although plants grown ex-
perimentally in nonuniform spatial patterns often do show
greater size inequality than plants grown in uniform pat-
terns, these differences are usually much smaller than
would be expected from models that focus primarily on
two-dimensional spatial pattern. There was significantly
higher size inequality in randomly sown than in uniformly
sown populations of Trifolium incarnatum and Lolium
multiflorum in only one of four cases, and in one of the
cases inequality was actually higher in the hexagonal pat-
tern (Weiner 1985). There was a significant effect of spatial
pattern (hexagonal vs. random vs. clumped) in Prunella
vulgaris populations grown at 308 and 769 plants m�2 but
not at 3,077 plants m�2 (Miller et al. 1994). Such exper-
imental results argue strongly for the importance of com-
petitive asymmetry in generating size variation at high
densities. In our model, if competition is totally asym-
metric, its role in generating size variation will increase
with density and over time, while the relative contribution
of spatial pattern decreases accordingly. Local variation in
crowding seems to be most important in generating size
variation when competition is symmetric (see, e.g., Weiner
1984; Stoll et al. 1994), but investigations of intermediate
levels of size asymmetry are needed.

The effects of spatial pattern on size variation are also
smaller in the glasshouse or field than in most models
because plasticity in growth form means that a plant’s
location is not totally fixed by its point of emergence from
the soil (Weiner 1985). For example, the locations of grow-
ing apices on plants that have a main axis may be much
more uniform than the locations of their bases because
plants grow toward the light and thus try to avoid neigh-
bors (Sorrensen-Cothern et al. 1993; Umeki 1997). Plas-
ticity in growth alters the spatial pattern and reduces the
intensity and asymmetry of competition (Schwinning and
Weiner 1998). In our model, a zero growth rate due to
competition occurs immediately for some plants in asym-
metrically competing, nonuniformly distributed popula-
tions. When locations are random or clumped in space,
some plants will have very close neighbors. If competition
is asymmetric, a small plant will stop growing or die as
soon as it is completely covered by one or more larger

individuals. This does not happen in the field because
plasticity allows plants to adjust their locations somewhat
and because competition is rarely completely size asym-
metric. What most limits the usefulness of ZOI models
may not be their simple mechanism of competition but
the absence of plasticity. Plasticity could be incorporated
in future studies.

The Problem of Death in Analyzing Size Distributions

Death complicates the analysis of plant size distributions.
The results of most studies of plant population develop-
ment are contingent on survival. Density-dependent mor-
tality (self-thinning) occurs when crowding is severe, and
it is concentrated among the smallest individuals, thus
altering the size distribution. As a crowded stand develops,
size inequality increases until the onset of self-thinning.
During self-thinning, size inequality of survivors decreases,
and after extensive mortality, the relatively few survivors
are quite equal in size (Weiner and Thomas 1986; Weiner
1988; Kenkel et al. 1997). If, however, one were to consider
the size distribution of all individuals, living and dead (by
considering the size of dead plants to be their size at death),
size inequality would increase monotonically during self-
thinning (Thomas and Weiner 1989a). Thus, there may
be cases in which plants grown at higher density show
lower size inequality than plants grown at lower density
if one looks only at survivors.

Whether or not to include dead individuals in the anal-
ysis of plant size distributions depends on the question
being asked. If the question concerns biomass accumu-
lation, dead plants might be best considered to have the
size that they achieved before dying, as we have done here,
but if the question of interest is fecundity distributions in
monocarpic plants, dead plants may be considered to have
a value of 0 if they die before reproducing.

Conclusion

In this study, we have used a ZOI model to clarify the
relative importance of density, spatial pattern, and com-
petitive symmetry to size variation in simple plant pop-
ulations. Although we have expanded the parameter space
investigated greatly over previous studies, we have re-
mained in a relatively restricted region so that our results
could be compared to other models and available data.
Further questions that arise immediately include the effects
of different growth equations, intermediate degrees of size
asymmetry, clumped spatial patterns, and increased sto-
chastic variation in parameter values. The model can also
be used to look at much later stages of population de-
velopment, such as self-thinning. Future work should
combine modeling with empirical studies that inform
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choices of equations and parameters in the model and also
allow for direct comparison of model and field results (see,
e.g., Berger and Hildenbrandt 2000). ZOI models have
much to offer plant population biology, both as theoretical
tools and in empirical studies.
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