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Recently there has been much interest in
the hypothesis that competition between
individual plants is asymmetric or one-
sided: larger individuals obtain a dispro-
portionate share of the resources (for their
relative size) and suppress the growth of
smaller individuals. This has important im-
plications for population structure, for the
analysis of competition between plants at
the individual, population and community
levels, and for our understanding of compe-
tition as a selective force in the evolution of
plant populations.

Competition in plants ultimately
occurs between individuals. Com-
petition at higher levels, e.g. be-
tween species, is the summation
over time and space of many such
interactions, and has commonly
been studied in terms of density—
yield relationships and self-thin-
ning trajectories. Ecologists have
now begun to look at interactions
between individuals in terms of
mechanisms of interference.

How do competing individuals
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consume and divide up limiting re-
sources? One concept that bears on
this question is that of asymmetric
competition. The term ‘asymmetric
competition’'? is synonymous with,
or overlaps, several other terms, in-
cluding ‘one-sided competition’,
‘dominance and suppression’®,
‘resource pre-emption’ and even
‘snowball competition'”. Not only do
all these terms overlap in meaning,
but few have been clearly defined.

Symmetry versus asymmetry

The basic concept of competitive
asymmetry is that larger plants have
a competitive advantage over small
plants. Similarly, ‘symmetric’ com-
petition (‘two-sided competition’ or
‘resource depletion’) implies that
competitive effects of larger and
smaller individuals are, in some
sense, equal. From basic principles,
one would expect the effect of a
plant on its neighbors to be related
to its size. For example, plants have
modular construction, such that a
larger individual consists of more
modules than a smaller one. Since
these modules represent physio-
logical units, it is to be expected
that a larger individual (which is a

larger population of modules) will
have a greater competitive effect
than a smaller one. How much or
what type of an advantage is necess-
ary if we are to consider competition
‘asymmetric’?

Here, | use the term ‘absolute
symmetry’ to refer to the case in
which all individuals have the same
effect or use the same amount of
resources, irrespective of their size?,
and ‘relative-size symmetry’ (per-
unit-size symmetry) to refer to situ-
ations in which the competitive
effect or resource acquisition is pro-
portional to some measure of size.
Thus, the fact that a larger individual
has a competitive advantage over a
smaller individual does not necess-
arily mean that competition is asym-
metric; it may be relative-size
symmetric. For competition to be
asymmetric, the larger individual
must have a disproportionate effect
or obtain a disproportionate share
of the resources, for its relative size.
Thus, if a plant that is twice as large
as another has twice the effect or
obtains twice the amount of re-
sources, this would be considered
relative-size symmetric compe-
tition. For competition to be asym-
metric, the individual that is twice as
large as another must have more
than twice the competitive effect, or
obtain more than twice the amount
of resources as its smaller neighbor.

The opposite extreme of absolute
symmetry would be absolute asym-
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metry: in this case, a larger individ-
ual (even if it were only slightly
larger than its competitors) would
not be affected at all by competition
from smaller individuals. This would
mean that the largest plants in a
crowded stand would be the same
size as totally uncrowded plants.
While such an extreme form of
asymmetry has been modelled®, we
might expect the real world to re-
flect a continuum of possibilities
between absolute symmetry and
absolute asymmetry. Competitive
asymmetry versus symmetry is simi-
lar to the concepts of ‘contest’ and
‘scramble’ competition in the ani-
mal ecology literature, but asym-
metry focuses on the issue of the
relative size of the contestants,
rather than other factors.

Evidence for asymmetric competition
Size variability and density dependence

The first type of evidence that is
relevant to competitive asymmetry
is the relationship between density
and size variability in crowded
populations. The study of density
dependence in plants has tradition-
ally addressed the relationship be-
tween mean plant size and density.
Most models of density depen-
dence do not address the issue of
variability in the population around
this mean value. To develop hy-
potheses about the relationship be-
tween competitive symmetry and
size variation, we must look to
models that also address the distri-
bution of sizes within the popu-
lation'®!", including those that
model the growth of individual
plants within a competing stand'?-'4,
In such models, implicit or explicit
assumptions are made about the
symmetry or asymmetry of the com-
petitive interactions.

In spatial models in which size or
growth is a function of positional
information only, competition is
absolutely symmetric, because the
size of neighbors is not a variable.
This includes models in which plant
size is a function of ‘available area’!?,
defined as the two-dimensional
area that is closer to the plant than
to any other individual, and ‘neigh-
borhood models’, in which the size
or growth of each plant is a function
of the number'?, or number and dis-
tance'®, of its neighbors. Neighbor-
hood models in which the size of
neighbors influences size or growth
of an individual'®!” assume that

competition is relative-size sym-
metric. Competition is asymmetric
in models in which the growth of a
plant is disproportionately affected
by larger neighbors'®!"18 or where
the areas of overlapping ‘zones
of influence’ between competing
individuals are disproportionately
available to the larger individual'*".

Models of plant competition in
which competition is asymmetric
predict that populations grown at
higher densities (without mortality)
should show greater size variability
or inequality (see Box 1) than popu-
lations grown at lower densities
over the same period?. Simply put,
although size variability will in-
crease in the absence of compe-
tition if plants vary in their relative
growth rates (RGRs)?®, asymmetric
competition acts to increase the
variation in relative growth rates
and therefore to exaggerate relative
size differences over what they
would be without, or with reduced,
competition. The higher the den-
sity, the sooner these asymmetric
interactions begin, and the more
intense they will be.

On the other hand, symmetric
models of competition, whether ab-
solute or relative-size symmetric,
predict that populations grown at
higher densities will have the same
or lower levels of size inequality
than populations grown at lower den-
sities or without competition. This
is because symmetric competition
acts to slow the growth of all plants,
and thus slow the divergence in size
that occurs when plants are not
interacting. So far, one exception to
this theoretical generalization has
been published!. In a spatial model
in which the spatial pattern of plants
is not uniform, size inequality will
be lower at very low density (few or
no plants competing) than at low
density (most plants experiencing
competition), even if competition is
completely symmetric. Increasing
density above that at which all
plants are competing does not
result in further increases in size
inequality. It is unclear how import-
ant this exception is in natural or
agricultural situations, since, at most
densities and in most experimental
and field studies, all plants have
some neighbors.

To test the two alternative hy-
potheses, Weiner and Thomas? re-
viewed the published experiments
on monocultures in which (1) den-

Box 1. The measurement of size variability

One type of evidence for asymmetric com-
petition is the effect of density on the varia-
bility in size or ‘size hierarchy’ within a
population, but it is not always clear what is
meant by these ambiguous terms. The classi-
cal measures of variation are the variance (s?)
and its square root, the standard deviation (s).
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However, since these measure absolute vari-
ation, they do not allow us to compare
populations of very different mean size, or the
same population as its mean size increases.
We would not expect a population of plants
with a mean size of a few grams to have the
same variance as a population with a mean
size of many kilograms. What is needed is a
measure of relative variation, such as the
coefficient of variation (CV), which is simply
the standard deviation divided by the mean
(usually expressed as a percentage):
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The observation that plant populations con-
sist of many small individuals and few large
ones led many ecologists to look at the
skewness (g,) of the size distribution as a
measure of ‘hierarchy’.
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Weiner and Solbrig? argued that skewness is
misleading in that it only measures the asym-
metry of the distribution without reflecting
its spread. Thus, a population could have a
highly skewed distribution while having very
low relative variation. They argued that ‘size
hierarchy’ or size variability is synonymous
with size inequality or concentration, as de-
fined by economists to study inequality in
wealth or income, and that the inequality of
the size distribution, not its skewness, reflects
what is important biologically. Their con-
clusions have been supported by an exten-
sive study by Knox et al.?! on population size
structure of Pinus taeda. Knox et al. looked at
the behavior of several of the summary stat-
istics that have been used to describe size
distributions, and found that measures of
inequality provided robust indicators of
density effects on growth and size-selective
mortality, whereas skewness was less well-
behaved. The most commonly used
measures of inequality are the coefficient of
variation?? and the Gini coefficient (G)2°?',
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although there are also several others?®. The
choice of a measure of inequality ultimately
depends upon the question being addressed
and the underlying distribution of the data®.

sity was the independent variable,
(2) mortality was not greater than
20%, and (3) size inequality was
measured or could be calculated
from published data or original data
supplied by the researcher. Despite
the hundreds of density studies on
plants, they found only 16 studies
that met these criteria. Of these, 14
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Fig. 1. Five types of relationship between growth increment (AGR) and size: (a) AGR proportional to
size; (b) AGR independent of size; (c) AGR negatively related to size; (d) threshold size for additional
growth; (e) increasing, convex relationship between AGR and size. (a)—(c) are consistent with symmetric
competition or no competition; (d) and (e) are consistent with asymmetric competition.

showed increased size inequality
at higher densities. The two cases
that did not show this effect were
the shortest of the 16 experiments,
where the plants were grown from
seed for less than 45 days. They
concluded that early competition
between seedlings was symmetric,
whereas later competition becomes
asymmetric.

This conclusion was supported by
a study by Edmeades and Daynard?
on size variability in sequential har-
vests of maize (Zea mays) grown at
four densities. Early in the course
of the experiment there was no
clear relationship between the co-
efficient of variation (CV) in plant
weight and density. By the end of
the experiment (130 days), the CVin
plant weight increased directly with
density. Several more studies with
data on size inequality and density
have since been published. With
one notable exception?, they show
results that are consistent with the
previous studies.

Relationships between size and growth
rate

Another type of evidence in sup-
port of the notion that plant com-
petition is often asymmetric is the
relationship between the size of
an individual and its growth in a
crowded population. Several plant
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Fig. 2. The relationship between growth increment
(AGR) and size for a naturally occurring crowded popu-
lation of Impatiens pallida (jewelweed, touch-me-not),
and the size distribution of plants that died during the
period of observation®'. The x-axis is the same for both
graphs.

362

- AGR-size

ecologists have independently de-
veloped the idea of examining the
relationship between a plant’s size
at time t and its growth increment
(which is the same as absolute growth
rate, AGR) from time ¢ to t+x as a
way of studying how size distri-
butions change over time?-*. Some
AGR-size relationships are incom-
patible with the hypothesis of asym-
metric competition, while others
are inconsistent with symmetric
competition.

Consider, first, AGR-size relation-
ships in plants that are not compet-
ing. Plant growth is sigmoidal, with
a period of increasing AGR (i.e.
exponential growth), a period of
relatively constant AGR (linear
growth), and a period of declining
AGR (growth levelling off)®. If most
plants are in their exponential
growth phase, we would expect AGR
to be directly proportional to size
(Fig. 1a). If most plants are in their
linear growth phase, then AGRs will
be similar for all plants, with no clear
relationship between size and AGR
(Fig. 1b). If plants are in their
levelling-off phase, then AGR will
decrease with size (Fig. Ic). Now,
suppose that plants are crowded
and competition is symmetric. The
general types of predicted AGR-
size relationships may be similar,
although the actual growth rates will
be lower, and the lengths of the
different phases and the sizes
achieved within them will be
changed.

Asymmetric competition should
result in very different types of
relationships. Specifi-
cally, a threshold size for additional
growth (Fig. 1d) ora convex relation-
ship between AGR and size (Fig. le)
is consistent with asymmetric, but
not symmetric, competition. To see
why this is the case, it may be useful
to translate the above arguments
about AGR-size relationships into
RGR-size relationships. Simply, sig-
moidal growth means that a plant’s
RGR decreases as it grows, although
AGR increases during the early
near-exponential phase of growth.
Similarly, we might expect larger
plants in a stand to have higher
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AGRs if plants are in the exponential
phase of growth, but we would never
expect a positive relationship be-
tween size and RGR if competition
is symmetric: smaller plants should
still be able to grow, and their RGRs
(although not their AGRs) should be
as large as those of their larger
neighbors. Thus a positive relation-
ship between RGR and size within a
crowded population provides evi-
dence in support of competitive
asymmetry. This is what occurs if
there is a threshold size for further
growth (Fig. 1d, Fig. 2), or if there
is a convex positive relationship
between AGR and size (Fig. le). Re-
lationships of this type have been
observed in crowded populations
of Impatiens capensis®, I. pallida®',
Polygonum spp.?2 and Pinus radi-
ata®®. If plants below a certain
threshold size are not able to grow
further, some of them die (den-
sity-dependent mortality or self-
thinning).

One must be cautious in using a
single observed AGR-size relation-
ship to determine the symmetry
of competitive interactions, since
there may be alternative hypoth-
eses to explain a given AGR-size
relationship. Much stronger infer-
ences can be made by comparing
AGR-size relationships for crowded
and uncrowded plants of similar
sizes or over similar periods of
growth.

Extreme initial advantage in plant
competition

A third, although similar, type of
evidence for asymmetric compe-
tition between plants comes from
the observation that plants that
have a ‘head start’, i.e. germinate
earlier than their neighbors, often
have a tremendous advantage in
competition*3*3¢_ If competition is
symmetric, the initial advantage in
competition should be limited to
the additional time for growth and
the resources acquired before the
other competitors appear’. Of
course, if growth is exponential, a
slightly longer period of growth can
result in large differences in size,
but in most of the studies showing
an extreme initial advantage, the
populations were well past their ex-
ponential growth phase. Because
of the AGR-size relationships dis-
cussed above, only asymmetric
competition can account for the
manyfold size difference between
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plants that germinate just a few days
apart in these experiments.

Very little or no local competitive effect of
smaller neighbors

Perhaps the strongest evidence
for asymmetric competition has
come from the few cases in which
ecologists have looked at the effects
on subject plants of neighbors that
are larger or smaller than the sub-
ject individual. It is observed that
larger neighbors have a depressing
effect on the growth rate, whereas
smaller neighbors have little or no
effect*>®. Often, plants that are only
slightly smaller than the subject
plant still seem to have very little
effect on the subject’s growth.

The mechanism of competitive asymmetry

What are the mechanisms that
give rise to asymmetric or sym-
metric competition? One hypoth-
esis is that competition for light is
asymmetric and competition for soil
nutrients is symmetric. This was
suggested by the observation (dis-
cussed above) that in even-aged
populations competition seemed to
be symmetric at first, and became
asymmetric later on. Competition
for light can only occur when plants
are large enough to shade one
another, but competition for soil re-
sources can begin soon after plants
germinate?.

This hypothesis was tested with
an experiment on morning-glory
vines (Ipomoea tricolor) in which
root and shoot competition were
separated (Fig. 3)*”. While root com-
petition was much more severe than
shoot competition, in that the for-
mer reduced plant weight much
more than did the latter, it did not
resultin a significant increase in size
inequality. Shoot competition had a
smaller (although significant) effect
on mean plant size, but it did signifi-
cantly increase size inequality. In
the case where plants were compet-
ing both above and below ground,
the mean plant weight was not sig-
nificantly smaller than when compe-
tition occurred only below ground,
yet the size inequality was the high-
est of the four treatments. When the
plants were competing both above
and below ground, the reduction in
mean plant size (i.e. the intensity of
competition) was due to compe-
tition for soil resources, whereas the
increase in size variation was due to
competition for light. Thus, it ap-
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Fig. 3. An experiment on vines (Ipomoea tricolor), in which root and shoot competition were separ-
ated’’. Mean weight (open bars) was significantly different (P<0.01) for all comparisons between
treatments except (c) and (d). The CV in weight (shaded bars) was significantly different for the
comparison of treatments (a) and (b) (P<0.05), and for (a) and (d) (P<0.01).

pears that the asymmetry of the
interaction can be determined by
competition for a resource that is
not the one limiting the growth of
the population.

Wilson” separated root and shoot
competition between pairs of plants
to see if the extreme initial advan-
tage occurred in both cases. He
found asymmetry only when there
was competition above ground,
although his result of symmetric
below-ground competition can be
questioned because the plants
were clipped to keep the shoots
from overtopping the above-ground
barriers. Removal of above-ground
biomass is known to reduce below-
ground as well as above-ground
competition. More tests of hypoth-
eses concerning the mechanisms of
competition for specific resources
are necessary.

Clearly, competitive interactions
between plants are the result of the
combined effects of competition for
several resources, which may vary in
their degree of asymmetry. The de-

gree of asymmetry of competition

for a specific resource will be deter-
mined by the distribution of the
resource in space (e.g. distributed
uniformly or patchily), the nature of

the resource’s renewal (continual or
episodic flow, or a depletable pool),
and the mobility of the resource.
The morphology of the plant with
respect to uptake of the resource in
question will also play a role in
determining the asymmetry of the
interaction®2. Since a leaf shades
only leaves below it, competition for
light seems to be almost inherently
asymmetric?2. But in the rare situ-
ations in which plants grow in only
one dimension, becoming taller but
not wider?, even competition for
light can be symmetric. If a soil nutri-
ent is distributed throughout the
soil matrix, and if nutrient uptake is
proportional to the size of the root
mass, then we would expect compe-
tition for this nutrient to be relative-
size symmetric, as a smaller plant
will get its ‘share’ of the contested
resource. On the other hand, if soil
resources are distributed in large
patches that can be reached and
usurped by larger individuals, then
this would result in an asymmetric
interaction.

The close relationship between
the concept of asymmetry/
symmetry and mechanistic in-
terpretations of plant-plant inter-
actions means that data on the
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symmetry of interactions can be
used to test specific hypotheses
concerning the mechanisms of
these interactions. The concept of
competitive asymmetry/symmetry
can provide a much-needed link
between phenomenological and
mechanistic models of plant com-
petition.

Implications of asymmetric competition
Asymmetric competition has
enormous implications for plant
populations. As discussed above,
asymmetric competition increases
the size inequality within plant
populations. Because size is highly
correlated with survivorship and
fecundity (which, together, com-
prise much of what we think of
as darwinian fitness) within plant
populations, asymmetric compe-
tition increases fitness differentials
within the population. Wall and
Begon’® have argued that, contrary
to the commonly used operational
definition of competition as an
interaction between two individuals
that is negative for both, asymmetric
competition can actually increase
the fitness of individuals. This is
because fitness is defined in rela-
tive, not absolute, terms within a
population. If an individual's fec-
undity is decreased by 50% by com-
petition but, because of asymmetry,
most of the other individuals within
the population show a greater de-
crease in fecundity, then the fitness
of the individual in question has
actually increased. If there are corre-
lations between competitive domi-
nance and genotype, this will result
in natural selection; if there are not,
asymmetric competition will de-
crease effective population size and
increase genetic drift*.
Competitive asymmetry also ac-
counts for the sensitivity of the out-
come of competition experiments
to initial conditions. Competition
coefficients calculated to summar-
ize the competitive interactions be-
tween pairs of species often vary
enormously, even when the exper-
iments are conducted under very

similar circumstances*. Asymmetric
competition has the effect of making
the outcome of a competition ex-
periment highly dependent upon
the initial advantage. This may ac-
count for the apparent indeter-
minacy of relative abundances of
species in many plant communities.

The generally asymmetric nature
of plant competition and the result-
ing initial advantage may help to
provide the favorable conditions for
different species at different points
in time, which recent theory
suggests may be crucial to the long-
term stability of multi-species plant
communities?'. Similarly, asym-
metric competition accounts for the
concept of ‘critical periods’ for weed
control“2. If a certain size differential
between crop and weed individuals
can be established, the weeds no
longer have much of an effect on
crop yield. Competitive asymmetry
also has important implications for
plant population dynamic models.
For example, asymmetry means that
a crowded population will still have
large plants, and these will contrib-
ute most of the seeds to the next
generation; therefore seed vyield
will not, as some symmetric models
predict, decrease at high densities.
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