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Quantifying size-asymmetric growth among
individual beech trees

Thomas Nord-Larsen, Christian Damgaard, and Jacob Weiner

Abstract: We modelled the growth of individual trees in populations of European beech (Fagus sylvatica L.) grown under
different thinning regimes using a modified Richards equation. The effect of competition on growth was modelled by
coupling the n individual equations simultaneously with a saturation term. By assuming that the growth of an individual
within the population is a function of its size to a power a, a measure of the growth advantage of larger individuals
(size-asymmetric growth) is provided. If a > 1, larger trees have a disproportionate advantage in growth and by inference,
in competition. The degree of size-asymmetric growth, a, exceeded one in stands with large size variability and increased
significantly at increasing density. This suggests that the predominant mode of competition is size asymmetric and that
this size asymmetry increases with density. A measure of growth asymmetry is more informative than static measures of
size inequality in understanding the growth dynamics of managed forest stands. Since a provides a measure of the relative
importance of above- versus below-ground competition, it may be useful in interpreting the growth dynamics of forest
stands and may provide an additional level of information for modellers of forest growth.

Résumé : Les auteurs ont modélisé la croissance de tiges individuelles dans des populations de hêtre commun (Fagus
sylvatica L.) soumises à différents régimes d’éclaircie à l’aide d’une équation de Richards modifiée. L’effet de la
compétition sur la croissance a été modélisé en couplant simultanément les n équations individuelles à un terme
de saturation. Cet article fournit une mesure de l’avantage de croissance des individus les plus grands (croissance
asymétrique) en assumant que la croissance d’un individu dans une population est une fonction de sa taille à une
puissance a. Lorsque a > 1, les arbres les plus grands ont un avantage disproportionné en termes de croissance et, par
déduction, de compétition. Le degré d’asymétrie de la croissance due à la taille, a, dépassait l’unité dans les peuplements
où la taille des tiges varie fortement et augmentait de façon significative avec la densité. Cela indique que le mode
prédominant de compétition est asymétrique et que cette asymétrie due à la taille augmente avec la densité. Une mesure
de l’asymétrie de la croissance fournit plus d’information, comparativement à des mesures statiques d’inégalité de taille,
pour comprendre la dynamique de croissance des peuplements forestiers sous aménagement. Puisque a fournit une mesure
de l’importance relative de la compétition aérienne par rapport à la compétition souterraine, cette valeur peut être utile
pour l’interprétation de la dynamique de croissance des peuplements forestiers et peut fournir un niveau additionnel
d’information aux modélisateurs de la croissance de la forêt.

[Traduit par la Rédaction]

Introduction

Growth of forest trees depends on their ability to compete for
potentially limiting resources such as moisture, nutrients, and
light. The partitioning of a resource for which neighbouring in-
dividuals compete depends on the type of resource and whether
the competition is mediated by depletion or by preemption of
the resource. Completely symmetric competition occurs when
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contested resources are divided equally between competitors
irrespective of their size, whereas size-symmetric competition
occurs when uptake of contested resources is proportional to
size. Similarly, completely asymmetric competition is a one-
sided interaction in which the few largest individuals receive
all contested resources leaving nothing for their smaller com-
petitors (Schwinning and Weiner 1998). In forest stands, com-
petition among individual trees involves competition for sev-
eral resources, where competition for the individual resource is
more or less prominent. The resulting interaction is somewhere
on a continuum in which completely symmetric and completely
asymmetric competition are the extremes.

Light is the primary example of a preemptable resource that
generates size-asymmetric competition (i.e., larger individuals
obtain a disproportionate share of contested resources; Schwin-
ning and Weiner 1998). In crowded populations, large individu-
als intercept most of the light, causing a steep vertical gradient
of resource availability (Schwinning 1996). The suppression
of smaller individuals caused by size-asymmetric competition
for light is considered to be the driving force in mortality and
size inequality in crowded populations (Schwinning and Fox
1995). Competition for belowground resources, on the other
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hand, appears to be size symmetric (i.e., contested resources
are divided in proportion to competitor size; Casper and Jack-
son 1997,Weiner et al. 1997).

Although the underlying mechanisms of competitive inter-
ference between individual plants are difficult to investigate
directly, we can observe the resultant growth patterns of individ-
uals. If competition is intense and size-asymmetric, larger indi-
viduals receive more resources relative to their sizes,
suppressing the growth of smaller individuals, such that larger
individuals have higher relative growth rates than smaller in-
dividuals (size-asymmetric growth). This results in increasing
size inequality (in the absence of significant density-dependent
mortality; Weiner 1990). Thus, if competition is size asymmet-
ric, plants grown in dense populations should exhibit greater
size inequality than plants growing at lower densities. If com-
petition in dense populations is size symmetric, size variability
should be unchanged or lower at higher densities.

Models of individual tree growth that include the effects of
competition have a long tradition in forest growth and yield
modelling (for numerous references, see Vanclay 1994). Most
of these efforts have aimed to describe individual-tree growth
over a time interval as a function of plant size across the popu-
lation (Mcdill and Amateis 1993). This approach has been crit-
icized because each plant and time interval is treated separately
and because the dynamic interactions among individuals are
not modelled explicitly (Weiner et al. 1998). Coupling growth
equations of individual plants allows for explicit modelling of
these interactions and may help us to build more biologically
meaningful equations, because we can observe the effects of
factors or treatments on parameters that can have clear biologi-
cal interpretations (Damgaard 1999). Coupled differential equa-
tions have been used to estimate the degree of size-asymmetric
growth in monocultures of herbaceous plants at varying densi-
ties (Damgaard 1999, Damgaard et al. 2002).

In this study we model individual tree growth with coupled
differential equations to describe the dynamic nature of com-
petition among trees. We use this approach to address the fol-
lowing questions:

(1) Can coupled equations provide reasonable models for
describing forest stand and individual tree growth?

(2) What is the degree of size-asymmetric growth in beech
stands grown at various densities?

(3) How do thinning practices affect the degree of size-
asymmetric growth?

Materials and methods

Data collection

The data originate from the permanent experiment DQ at
Bregentved forest district in southeastern Denmark, located in
zone 32 at UTM coordinates E695747 m, N6136389 m (Euro-
pean datum 1950), 18 m a.s.l. The parent material is moranic till
from the Weichel glaciation, with high clay content and a good
nutrient supply. This site represents excellent growing condi-
tions for European beech (Fagus sylvatica L.) in Denmark. The
experiment was located in a beech stand established by strip
sowing in 1916, and the sample plot structure was established
in 1941. At the initiation of the experiment in 1941 the stand

appeared quite uniform and the initial spacing of the individual
plots was similar, although not identical (Holmsgaard 1985).

The experiment comprises 11 individual sample plots with
an area of 0.08–0.35 ha. Two of the sample plots are unthinned
controls, and the remaining plots were thinned according to
two different thinning strategies named after their proponents:
Jagd and Bavngaard (Holmsgaard 1985). Jagd advocated early,
heavy thinnings to achieve a rapid diameter growth and early
financial returns, whereas Bavngaard advocated moderate thin-
nings at young ages and retention of understorey trees to achieve
longer bole lengths and higher wood quality. The two thinning
strategies lead to quite different stand structures, where the plots
thinned according to the ideas of Jagd is more homogeneous
in size than those thinned according to the ideas of Bavngaard.
To reduce the computational load, 4 of the 11 plots were used
in the estimation (A1, Bavngaard; B2, Jagd; C1, Jagd; and E2,
unthinned control). The four plots were chosen to represent the
entire range of stand densities.

The plots were measured at every thinning, 11–13 times
from 1941 to 1998. The total data set comprised 136 individual
measurement occasions. From 1941 to 1950 diameters were
recorded in tally lists to 1 cm diameter classes. From 1953
all trees were numbered, marked permanently at breast height
(1.3 m), and recorded individually, although understorey trees
were still recorded in tally lists. Hence, from 1953 most of the
individual trees are positively identifiable in subsequent years
and these data were used for the analysis of individual tree
growth in this study.

Observations of diameter are obtained by two sets of per-
pendicular calliper readings at breast height for each tree. The
average of the two measurements is used as a measure of DBH.
Whether the tree is alive or dead at the time of measurement
was also recorded. The total data set comprises 24 843 diameter
measurements of 3530 individual trees. Individual tree height of
living trees was obtained by a hypsometer, and felled trees were
measured on the ground using a tape measure. The database
comprises 3949 height measurements on 1538 individual trees.

Based on the paired observations of diameter and height,
height–diameter equations were developed for each plot and
measurement combination using a modified Näslund equation
(Näslund 1936, Johannsen 2002):

[1] h =
(

d

α + βd

)3

+ 1.3

where d is DBH, h is the total tree height, and α and β are
the parameters to be estimated. The equations were then used
to estimate the height of trees not measured. Individual tree
volume was subsequently calculated for each individual tree
based on a volume equation for beech (Madsen 1987).

The four plots used in the analysis represent a wide range of
stand densities expressed by stand basal area (G), obtained by
summation of the cross-sectional areas of the individual stems
per hectare, and relative spacing (RS = (√

10 000/N
)
/H ,

where N is the number of stems per hectare and H is dominant
height measured as the average height of the 100 thickest trees
per hectare) (Fig. 1).

Model description
The choice of scalar measure of growth is not a trivial one,

as tree size represents a multidimensional vector and exhibits
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Fig. 1. (a) Basal area and (b) relative spacing for the 11 sample plots at experiment DQ. The four plots used in the analysis, A1
(Bavngaard), B2 (Jagd), C1 (Jagd), and E2 (unthinned control), are represented by the solid black lines, whereas the other plots are
presented by dotted lines. The vertical drops in basal area represent the basal area removed in individual thinnings.
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a high degree of plasticity under different conditions. For each
of the four plots we modelled both individual tree volume and
basal area growth. This choice of scalar measures of size was
dictated by available data that did not entail other measures of
tree size, such as crown dimensions, and we thus assumed that
the amount of physiologically active tissue is correlated with
volume and basal area.

We modelled individual tree growth by a modified Chapman–
Richards growth model (Richards 1959,Damgaard et al. 2002).

The model has well-known properties, is mathematically flex-
ible, and is among the most commonly used for modelling for-
est growth. The growth of n competitively interacting plants
is modelled by n coupled differential equations, where the ab-
solute growth rate is a function of tree size and a parameter
accounting for the degree of asymmetric growth (a). The effect
of competition between plants within the population is mod-
elled by the cumulative size of the n individual trees relative to
the fitted maximum cumulative size of the n trees (n(α)):

[2]
dvi(t)

dt
=

⎧⎪⎪⎨
⎪⎪⎩

κ
1−δ

f [vi(t), a]
{[

1
nα

∑n
j=1 vj (t)

]δ−1 − 1

}
δ �= 1

κf [vi(t), a]
{

log(nα) − log
[∑n

j=1 vj (t)
]}

δ = 1

for t ≥ 0, κ > 0, and α > 0. vi(t) is the size (volume or basal area) of tree i at time t , and κ , δ, and f (vi(t), a) determine the
absolute growth rate of the tree. If δ > 0, the growth curve is sigmoidal and the slope of the tangent at the point of inflexion decreases
with δ (Richards 1959, Seber and Wild 1989). α is the fitted maximum average tree size, and nα is the maximum cumulative size
of the n competing trees. Thus, when the cumulative size reaches its maximum, reflecting maximum total biomass of the stand,
growth stops.

The growth of individual trees is assumed to be proportional to a power function of their size (Schwinning and Fox 1995,Damgaard
1999,Wyszomirski et al. 1999):

[3] f (vi (t) , a) =
⎧⎨
⎩

1 a = 0
vi (t)a a > 0
1 (large plants) or 0 (small plants) a = ∞

where the effect of plant size on growth is quantified by the
size asymmetry parameter, a. If a = 0, all trees have the same
growth rate irrespective of their size (i.e., growth is completely
symmetric). If 0 < a < 1, the growth rate is less than pro-
portional to the size of the tree. If a = 1, the growth rate is

proportional to the size of the tree (i.e., growth is perfectly size
symmetric). If a > 1, the growth rate is more than propor-
tional to the size of the tree and growth is size -asymmetric. If
a = ∞, only the largest trees grow and growth is completely
asymmetric.
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Model estimation
To adequately describe the growth of a plant with a dimen-

sionless size less than one, the power function in eq. 3 was
modified to f [vi(t), a] = [vi (t) + 1]a − 1, since this is a
monotonically increasing function of both size and the pa-
rameter a, for all vi(t) > 0, while still passing through the
origin (Damgaard 1999). All parameters except for δ were ex-
ponentially reparameterized to ensure that they were strictly
positive (all results are reported after parameter values have
been transformed back). Both model and increment data were
log transformed to ensure homogeneity of variance. Trees that
died or were thinned were only modelled until the time of death
and thereafter assumed to no longer to contribute to the popu-
lation biomass (i.e., they no longer compete with living trees).

The coupled differential equations (eq. 2) cannot be solved
analytically, and the equations were solved numerically using
the NDSolve routine of Mathematica (Wolfram 2003). This rou-
tine simultaneously made incremental changes to the size of all
trees at each measurement to the subsequent measurement for a
specific parameter combination using sufficiently small steps.
The likelihood of each parameter combination was then cal-
culated from the transformed predicted increments and trans-
formed observed increments for all n plants. The maximum
likelihood estimates of the parameter values were found using
the NMaximize routine of Mathematica (Wolfram 2003).

The hypothesis of a = 1 was tested using a likelihood ra-
tio test. The Bayesian posterior probability distributions of the
parameters were calculated using the Metropolis–Hastings al-
gorithm assuming an uninformative uniform prior distribution
(100 000 samples with a burn-in period of 1000 iterations for
stabilizing parameter values) (Carlin and Louis 1996). Since
the computational load increases rapidly with increasing num-
ber of trees, 100 randomly selected trees from each plot were
used for calculating the posterior distributions. Statistical in-
ferences were based on the 95% credibility intervals (2.5th to
97.5th percentile of the posterior distribution) of the parame-

ters. Parameters were concluded to be significantly different if
the 2.5th percentile of the high parameter was higher than the
97.5th percentile of the low parameter.

The data used for this study represent a nested structure of re-
peated measurements on individual trees within different plots.
Failure to recognize this correlation structure could result in
inefficient estimates and underestimated standard errors when
correlations are strong. However, both within-plot correlations
and the correlation of individual tree increments are generally
not strong (Gertner 1985, Reed and Burkhart 1985). Further,
when growth, as in the present study, is viewed as an incremen-
tal process where only current conditions affect current growth,
the problems of serial correlation are generally avoided (García
1983, Seber and Wild 1989). Hence, in present study we as-
sumed that errors were uncorrelated but tested this assumption
in the post hoc analysis.

Statistical fit of the model
Model assumptions were tested by visual inspection of

residual plots and by statistical tests of homogeneity (Bartlett–
Box test) and normality (Kolmogorov–Smirnov andAndersson–
Darling tests) of residuals. Further, the hypothesis of no
autoregression was tested using a Durbin–Watson test (Durbin
and Watson 1950):

[4] d =

n∑
t=2

(et − et−1)
2

n∑
t=1

e2
t

where et is the residual at time t and d is the test statistic.
Statistical tests of model bias included simultaneous F tests

for unit slope and zero intercept on the linear regression of
observed versus predicted data (Dent and Blackie 1979):

[5] F =

(
nj − 2

) {
nja

2
j + 2njXaj

(
bj − 1

) +
nj∑
i=1

[
X2

i

(
bj − 1

)2
]}

2nj MSE

where aj and bj are the intercept and slope of the regression of
observed versus predicted values at the j th plot, respectively,
Xi is the predicted values of the ith tree, and MSE is the mean
square error of the linear regression.

Precision of the model was evaluated using R2 statistics, the
root mean square error, and the absolute average bias of the
back-transformed values.

Results

The Richards model accounted for more than 99% of the
variation in the observed diameter and volume of the individ-
ual trees at the end of the measurement intervals (Table 1). The

model accounted for 81.2%–92.2% of the observed diameter in-
crement and 68.2%–93.9% of the observed volume increment
(data not shown). Residuals were approximately normally dis-
tributed with zero mean for all the plots, and variances were
approximately homogeneous (Fig. 2). According to the simul-
taneous F tests, the model was unbiased for both measures of
size for plots B2 and C1. While the model was significantly
biased for plots A1 and E2 for both measures of size, the bias
was very small (Table 1). Residuals were significantly corre-
lated among individual trees, but correlations were small and
did not affect model inferences adversely.

In heterogeneous stands, such as the control plots and the
plots subjected to the Bavngaard regime, a > 1, whereas a < 1
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Table 1. Maximum likelihood estimates of the parameter a in the growth model (eq. 2).

Measure Regime Plot a 2.5% 50% 97.5% R2a RMSEa AABa

Diameter2 Bavngaard A1 1.4290 1.3699 1.4251 1.4919 0.994 7.621 4.772
Jagd B2 0.8333 0.6315 0.6776 0.7154 0.994 7.256 5.590
Jagd C1 0.9068 0.7707 0.8420 0.9018 0.993 7.377 5.257
Control E2 1.8900 1.8103 1.8645 1.9382 0.997 3.968 2.747

Volume Bavngaard A1 1.1979 0.0426 0.3497 0.6853 0.991 0.069 0.029
Jagd B2 0.6174 0.4459 0.7050 0.9113 0.995 0.064 0.040
Jagd C1 0.4609 0.2014 0.4076 0.5707 0.992 0.071 0.040
Control E2 2.4201 1.8904 2.1581 2.4018 0.985 0.043 0.023

Note: All estimates of a were significantly different from one (P < 0.0001). The Bayesian posterior
probability distributions of a based on a subsample of 100 trees are reported by the 2.5th percentile, 50th
percentile, and 97.5th percentile.
aThe R2 statistic, root mean square error (RMSE), and absolute average bias (AAB) are based upon

back-transformed residuals of diameter and volume.

Fig. 2. Residual plot of untransformed residuals of diameter2 versus the natural logarithm of predicted values (in mm) for the four plots.
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in the homogeneous stands of the Jagd thinning regime (Ta-
ble 1). For both measures of tree size (basal area or estimated
volume), a was significantly higher in the plots with higher den-
sities (control and Bavngaard) than in those with lower density
(Jagd).

The 50th percentile of the posterior distributions of a were
similar to the maximum likelihood estimate for most of the
plots. However, in some cases the maximum likelihood es-
timate deviated significantly from the posterior distribution,
which indicated that the estimation of the posterior distribu-
tion was somewhat sensitive to the selection of individual trees
analyzed.

The posterior distributions of the other parameters of the
sigmoidal curve were also sampled. However, since diameter

and volume growth are close to linear in the observed interval
(Fig. 3), these parameters have a rather large credibility interval
and are not very informative about the shape of the growth
curves.

It may be argued that since the growth curves are almost lin-
ear, a simpler growth model may be used to fit the parameter of
interest, a, instead of a sigmoidal growth model. We also fitted
a simple saturation model, the monomolecular model (δ = 0),
to the data. In the cases where δ differed significantly from
zero, the Richards model fit better than the simpler model. In
the other cases where δ of the Richards model was not signif-
icantly different from zero, the maximum likelihood estimates
of a were almost identical (results not shown). As the choice of
model in those cases apparently did not affect the estimates of
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Fig. 3. Individual tree growth at plots A1 (Bavngaard), B2 (Jagd), C1 (Jagd), and E2 (unthinned control).
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the parameter of interest, a, the more flexible Richards growth
model was used in the reported fitting procedures.

Discussion
Consistent with the previous studies showing that growth is

size asymmetric in crowded plant populations, a > 1 in the con-
trol plots and in the plots subjected to the Bavngaard regime. For
both measures of tree size (basal area and estimated volume), a
increased significantly with increasing stand density. Thus, our
findings provide further evidence that the overall mode of com-
petition between individual trees is size asymmetric and that
size asymmetry of growth increases with population density,
that is, the advantage of being larger is greater in more crowded
populations.

In the more size-homogeneous stands of the Jagd thinning
regimes, a < 1. This may simply reflect a general inability to
observe size-asymmetric growth in homogeneous stands (i.e.,
if all trees have the same size, size-asymmetric growth will
not be observed, even if the underlying competitive process
is size asymmetric). Another possible explanation is that the
Jagd thinning regime has an overall lower density and hence
competition is expected to be more size symmetric, although
the differences in density between the two regimes are not very
pronounced. Thinning will reduce the intensity of competition
and therefore the degree of competitive asymmetry, but if the
thinning regime increases size variation within the population
it will increase the potential for size-asymmetric competition
to result in size-asymmetric growth.

Our findings are consistent with those from a study on
interspecies competition in cedar–hemlock forests in British

Columbia. Using measures of relative height and distance-
dependent competition indexes, competition was found to be
asymmetric and depended on neighbour identity (Simard and
Sachs 2004). Asymmetric competition has also been reported
in numerous nonwoody species including Helianthus annuus
(Watkinson et al. 1983), Impatiens pallida (Weiner and Thomas
1992), Pennisetum americanum (Schwinning 1996), Kochia
scoparia (Weiner and Fishman 1994), Brassica napus
(Damgaard 1999), and Chenopodium album (Damgaard et al.
2002). In monospecific, even-aged, and spatially heterogeneous
stands of black spruce (Picea mariana), both resource depletion
and resource preemption processes were identified (Newton and
Jollife 1998). Our results suggest that the strength of preemp-
tion processes increases more sharply with density than does
the strength of depletion processes. This leads to an increas-
ing overall asymmetry of competition and therefore growth at
higher densities.

The degree of growth asymmetry observed at different thin-
ning intensities in this study is an expression of the average
growth pattern during the time the plots were measured as
trees grew (i.e., a probably varies across time). As a stand
ages, the effect of competitive processes may vary because of
changes in stand characteristics, size, limiting resources, and
age-dependent physiological changes within the trees. Compet-
itive processes were similar among 25- to 50-year-old stands
of cedar–hemlock forests, but these contrasted sharply with
11-year-old stands (Simard and Sachs 2004). There is also evi-
dence that the expression of the resulting competitive processes
may vary as a result of variation in resource availability (Weiner
1985, Knox et al. 1989, Cescatti and Piutti 1998). Medium and
large trees of Sitka spruce (Picea sitchensis) in an even-aged
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Fig. 4. Gini coefficients as a function of stand age for the
individual plots. The four plots used in the analysis, A1
(Bavngaard), B2 (Jagd), C1 (Jagd), and E2 (unthinned control),
are represented by the solid black lines, whereas the other plots
are presented by dotted lines.
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stand were found to respond more vigorously to increasing
water availability, thereby expressing increasing asymmetry of
competition (Wichmann 2001, 2002). Similarly, differentiation
in unthinned stands of Sitka spruce was more pronounced in fer-
tile stands, indicating that ample belowground resources lead
to a more pronounced asymmetric growth (Skovsgaard 1997).
Thus, increased availability of belowground resources results
in an increase in competition for light and therefore increased
asymmetric growth. Since a varies with the relative importance
of above- versus below-ground competition, it may be useful
in interpreting the growth dynamics of forest stands and the
relative roles of competition for light and soil resources.

The degree of asymmetric growth has been assessed by mea-
suring the size inequality of the plant population (Weiner and
Solbrig 1984,Weiner andThomas 1986,Knox et al. 1989,Weiner
1990). One approach to describe inequality of plant size is with
the Lorenz curve and the Gini coefficient. The Lorenz curve
depicts the cumulative plant size when individuals are ranked
according to their size (Lorenz 1905, Damgaard and Weiner
2000). Based on the Lorenz curve of a theoretical population
in which all individuals are equal to the mean (line of equal-
ity), the Gini coefficient expresses the ratio of the area between
the line of equality and the Lorenz curve to the area under the
line of equality. The depiction of Gini coefficients (based on
diameter2) across stand ages of the individual plots (Fig. 4)
shows a clear distinction between the thinning regime by Jagd
on one side (plots B1–C2) and unthinned controls (E1–E2) and
the thinning regime by Bavngaard (plots A1, A2, D1, and D2)
on the other. Although we found the asymmetric growth to be
largest in the dense, unthinned plots, size inequality is appar-
ently largest in the plots subjected to the Bavngaard thinning
regime. This is not surprising, since the Bavngaard regime aims
at actively maintaining a vigorous understorey and hence a large
diversity of sizes compared to that of the Jagd regime and the
unthinned controls. The size inequality of these stands is not
primarily a result of the competitive processes but rather a di-
rect result of the thinning practices. This emphasizes the need
for dynamic measures of size-asymmetric growth in managed
forest stands.

Recent developments in computational statistics afford us the
opportunity to break down the distinction between theoretical
and statistical modelling in ecology. We can now build and fit
biologically based (and biologically motivated) models, that is,
models in which the parameters have clear biological interpre-
tations that, until a few years ago, one would not even think
of fitting to real data. In this study, competition among indi-
viduals was modelled by simultaneously coupling differential
equations for the individual trees. Thus, each plant’s growth
rate is affected not only by its own size and growth parameters
but also by the cumulative size of all the other individuals in the
population. The relationship between individual plant size and
growth rate across the population contains important informa-
tion about the size symmetry of competition among individuals.
Explicit modelling of this relationship represents another level
of information that offers the possibility of bridging the gap
between predictive and descriptive models of forest growth.
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