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Abstract

The spatial distribution of individual crop plants in the field is important for crop growth, yield production, and crop–weed interactions, but

the role of spatial pattern has not been appreciated in agricultural research. A quantitative measure of degree of spatial uniformity/aggregation

of individual plants would be very useful in this context. We digitized photographs of field plots of weed-infested spring wheat sown in

uniform, random and normal row patterns at three densities (204, 449 and 721 seeds m�2), and described the locations of individual wheat

seedling as x- and y-coordinates. We analyzed the spatial pattern of these plant locations in two ways. One approach is based on Voronoi or

Thiessen polygons (also called tessellations or tiles), which delimit the area closer to each individual than to any other individual. The relative

variation (coefficient of variation) in polygon area and the mean shape ratio (ratio between the circumference of the polygon and that of a

circle of the same area) of the polygons are measures of spatial aggregation. The other approach was Morisita’s index of dispersion, which is

based on the mean and variance in number of individuals in sampling units (quadrats). The CVof polygon area, the mean shape ratio of these

polygons and Morisita’s index of dispersion, all performed well as descriptions of the degree of spatial aggregation of crop plants. Models

using one of these measures of uniformity and sowing density as explanatory variables accounted for 74–80% of the variation in crop biomass

production. Despite its simplicity, models with Morisita’s index performed slightly better than models using polygon parameters, accounting

for 80–86% of the variation in weed biomass. Simple spatial analyses of individuals have much to offer agricultural research.
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1. Introduction

Agricultural production is the result of the growth,

development and yield of individual plants in the field. The

spatial distribution of crop plants is important for these

processes, but the role of crop spatial pattern remains poorly

investigated. In a series of recent studies, we have shown that

a highly uniform pattern of crop plants suppresses weeds

30% better on average than plants distributed in standard

12 cm rows, and that further improvements in weed

suppression can be achieved by also increasing crop density

(Weiner et al., 2001; Olsen et al., 2005, in press). But it is not

clear what degree of uniformity is necessary to achieve

major improvements in weed suppression (Olsen et al.,
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2005). Addressing this question requires a meaningful and

useful measurement of the degree of spatial uniformity of

individual plants.

Spatial analysis of individuals is an important tool in

plant ecology (Tilman and Kareiva, 1998; Dieckmann et al.,

2000) but not yet in agricultural research, where the

underlying spatial patterns of individual crop (or weed)

plants are usually described in very general categories. More

detailed information on the pattern of individual plants in the

field and appropriate analytical methods are needed if we are

to understand and evaluate the effects of spatial pattern on

crop performance. Here we ask the following question: is

it possible to describe the degree of spatial aggregation/

uniformity with a simple quantitative measure, which can

then be used to compare different spatial crop patterns?

A wide range of methods is available for quantifying

spatial patterns (e.g. Ripley, 1981; Krebs, 1989; Cressie,
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1993; Leibold and Mikkelson, 2002; Perry et al., 2002). In

most ecological studies, the objective is to reveal underlying

spatial patterns to make inferences about mechanisms and

interactions (see Perry et al., 2002). Often it is important to

describe a pattern at several scales, and therefore, a method

depending on a single scale is not considered optimal.

In this study, we have a different goal. Agricultural

engineers have studied the performance of sowing machin-

ery and the resultant crop patterns of seedlings, but most of

these investigations have been primarily concerned with the

evenness of within-row seed spacing, and therefore, the

analyses have been one-dimensional (Panning et al., 2000;

Pasternak et al., 1987). The implicit assumption is that more

even within-row spacing will result in a more uniform two-

dimensional spatial pattern. There has been little two-

dimensional spatial analysis of seeding patterns (Heege,

1970; Griepentrog, 1999).

There are three general categories of two-dimensional

point patterns: (1) uniform (hyperdispersed), (2) random, and

(3) clumped (aggregated). It would be useful to describe the

degree of two-dimensional spatial uniformity/aggregation of

crop plants with a single measure on a continuous scale, which

is independent of the sowing method used (Olsen et al., 2005).

Here, we apply two well-known and accessible methods to

evaluate the spatial distribution of individual crop plants in

agricultural experiments. These are Morisita’s index of

dispersion (Morisita, 1959, 1962; Cressie, 1993; Tsuji and

Tsuji, 1998) and Voronoi or Thiessen polygons (Guibas et al.,

1990; Green and Sibson, 1978). Both these methods can be

applied to x, y point-referenced data.

1.1. Voronoi polygons

For given collection of points in a plane, Voronoi

polygons (also called Thiessen polygons or tiles) delimit all

points in the plane that are closer to each of the given points

than to any other point. If coordinates of individual points

(here representing individual plant locations) are known,

Voronoi polygons can be calculated from a Delaunay-

triangulation (Lee and Schachter, 1980) which is based on

the perpendicular bisectors of lines connecting neighbouring

plants (Mithen et al., 1984).

Properties of potential interest for the analysis of plant

populations include (i) the area of the polygon, (ii) the

general shape of the polygon (from relatively round to

highly elongated), and (iii) the eccentricity (the location of

the point within the polygon relative to the center;

Griepentrog, 1999). Here we investigate the first two of

these. To quantify how much a polygon shape deviates from

a perfect circle, a ‘‘shape ratio’’, S, is calculated. The shape

ratio is the ratio between the circumferences of the observed

polygon and the circumference of a circle of the same area

(modified from Griepentrog, 1999):

S ¼ Cpolygon

Ccircle

; (1)
where Cpolygon is the circumference of the polygon, and

Ccircle is the circumference of a circle of the same

area = 2
ffiffiffiffiffiffi
pA

p
, where A is the polygon area.

The above-mentioned polygon parameters have been

used to evaluate the competition among plants (Mead, 1966;

Mithen et al., 1984). Fischer and Miles (1973) modelled a

plant’s exploitation of resources in two dimensions as an

expanding circle, centered at the point of seedling

emergence. They predicted that sowing of crops in a

triangular pattern would result in the most efficient

exploitation of space by crop plants and in the least amount

of space available for weed growth. Consequently, every

plant would ideally be positioned on an equilateral triangle,

which results in a ‘‘beehive’’ pattern of hexagonal individual

areas.

There are two disadvantages of the polygon approach.

First, border effects have to be handled prior to data analysis.

Polygons near the edge of the sample area cannot be

calculated, so these points cannot be used in the analysis.

Second, while polygons are an intuitive and simple way to

describe point patterns, their analysis is not straightforward.

Polygon analysis does not give us a convenient single

measure of uniformity/aggregation. Non-uniformity can be

manifested in several ways, such as variation in polygon

area, mean and variation in polygon shape, or mean and

variation in eccentricity. We do not know which of these is

most useful, nor do we know of any measure that combines

several of these aspects of non-uniformity. Here, we

consider variation in polygon area and the mean polygon

shape ratio as simple measures of non-uniformity, and ask

the following questions:
(a) W
hat is the degree of spatial uniformity of individual

crop plants sown in highly uniform, random and

standard row patterns at different densities?
(b) A
re there major differences between the two approaches

to spatial pattern when applied to these different crop-

sowing patterns?
(c) D
o the derived indices and parameters provide

information relevant to crop and weed performance?
1.2. Morisita’s index of dispersion

Morisita’s index of dispersion (I) has been extensively

used to evaluate the degree of dispersion/aggregation of

spatial point patterns (Morisita, 1959, 1962; Cressie, 1993;

Tsuji and Tsuji, 1998; Tsuji and Kasuya, 2001). Morisita’s

index is based on random or regular quadrat counts, and is

closely related to the simplest and oldest measures of spatial

pattern, the variance:mean ratio (Krebs, 1989; Dale et al.,

2002) and to other dispersion indices, such as David and

Moore’s index of crowding, and lacunarity analysis (see

Dale et al., 2002). Because Morisita’s index can be

calculated for different quadrat sizes, the scale of the

analysis is not inherent, and it can be used to investigate

pattern over a range of densities and scales. Many spatial
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patterns are uniform at one scale, but clumped or random at

other scales (Dale et al., 2002).

Morisita’s index of dispersion (sometimes called Id, here

we call it I),

I ¼ Q

PQ
i¼1 niðni � 1Þ
NðN � 1Þ ; (2)

where Q is the number of quadrats in the sampling area, ni is

the number of plants in quadrat I, and N is the total number

of plants in the sampling area.

Morisita’s index requires that quadrats be small relative

to the scale of pattern to be described (Cressie, 1993). It

ranges from 0 (completely uniform) over 1 (random) to Q

(the most clumped arrangement when all plants occur in one

quadrat, and the index equals the number of quadrats).

Morisita’s index has several limitations. Considerable

information is lost when point-referenced data (x-, y-

coordinates) is converted to counts within quadrats (Cressie,

1993). Morisita’s index is a population measure based on

sampling units that are independent of individual points, so it

is not possible to evaluate pattern on the individual plant

level, as in polygon analysis. Border/edge effects are not a

problem when using Morisita’s index, and it has the

advantage of simplicity as a single measure of uniformity/

aggregation.
2. Materials and methods

We analyzed crop spatial data from a field experiment on

the effects of crop density and sowing pattern on crop–weed

competition. The experiment was performed at the Royal

Veterinary and Agricultural University’s research farm in

Taastrup, Denmark (558400N, 128180E). The soil is a sandy
Fig. 1. Delaunay triangulation. Every point in the plane within the Voronoi polygo

plant in the plane. Thin lines represent Delaunay triangulation helping lines to c
clay loam typical of eastern Zealand. The climate is

temperate/maritime with a mean temperature of 0 8C in

January and 16.5 8C in July, and a mean annual precipitation

of 613 mm.

Three crop sowing methods were used to establish (1) a

highly uniform pattern, (2) a random pattern, and (3) normal

row pattern (clumped pattern), at three seeding rates (204,

449 and 721 seeds m�2) of spring wheat (Triticum aestivum

L. cv. Leguan). We modified a precision seed drill

(Kverneland Accord Corporation, Soest, Germany) to sow

wheat in a highly uniform pattern (Weiner et al., 2001). This

was achieved through a combination of narrow row spacing

and even individual placement of seeds within rows. The

ratio of inter- to intra-row distance was about 1:1 for the low

and medium density and 5:4 for the high density.

To create a random sowing pattern, we used a modified

conventional grain seeder (Kongskilde Nordsten, Sorø,

Denmark) in which the coulters were removed and a bar

mounted below the outlets. The wheat seeds were dropped

from a height of 72 cm and bounced off the bar before falling

to the ground. The soil was then covered with 4 cm of

topsoil.

We used a standard plot research grain drill (Hege,

Waldenburg, Germany) with 12.8 cm row spacing to sow in

the normal rows.

The experiment was sown on 9 April 2002. Plots were

1.31 m � 8.0 m and there were four replicated blocks. After

sowing the wheat, the soil was rolled and levelled before

weeds were sown in a random pattern on the soil surface. The

weed seeds were sown the same way as the random wheat

pattern. After sowing the weed seeds on the soil surface, the

soil was rolled again. To achieve high weed pressure, Sinapis

arvensis L. was sown at a density of 350 seeds m�2. The

plots were fertilized at a rate of 80 kg N ha�1, 14 days after

sowing.
ns (thick line) is closer to the plant (dot) within the polygon than to any other

onstruct the polygons (Lee and Schachter, 1980, modified).
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Table 1

Mean and CV of polygon area and mean polygon shape ratio resulting from different sowing patterns and densities

Sowing pattern Sowing density

(seeds m�2)

Mean emergence

(plants m�2)

N Mean area

(cm2)

CV (area)

(%)

Mean shape-

ratio

Uniform 204 217 83 47.0 31.1 1.1507

449 445 281 22.9 36.0 1.1535

721 636 425 16.9 37.1 1.1580

Random 204 150 54 66.7 44.7 1.1860

449 370 241 26.4 47.1 1.2020

721 502 335 19.8 61.2 1.2181

Row 204 204 101 50.4 69.0 1.2982

449 396 232 26.4 63.4 1.2930

721 516 397 16.8 69.9 1.3291

Sowing density is determined by the sowing method used; N is the number of polygons contributing to the calculations.
On 2 May, after seedlings had emerged, we took

photographs with a digital camera mounted on a camera

stand in a fixed position 90 cm above ground, pointing

directly downwards and centered over a 50 cm � 50 cm

frame. The pictures were digitized and referenced using the

program Surfer# Version 7.0 (Golden Software, Golden,

Colorado, USA) giving the (x, y) point-referenced data for

each crop plant. Polygons were generated using the software

MatLab (MathWorks, Natick, Massachusetts, USA) and

modified standard routines (Griepentrog and Nielsen,

unpublished results; Fig. 1) were used to calculate area

and circumference of each polygon. The number of whole

polygons analyzed per treatment ranged from 54 to 425

(Table 1). Spatial analyses were performed only on crop

plants, not weeds.

A later measurement of field emergence was made

on 6 May (four days after photographing) by counting

the number of seedlings per meter row to ask whether

differences in emergence at the time of photographing were

due to variation in emergence speed or actual differences in

post-emergence plant density.

The point-referenced (x, y) data from the digitized photos

were also used to calculate the Morisita’s index of dispersion

(I), after dividing the total plot area into quadrats. Since

Morisita’s index can be sensitive to scale, i.e. sample unit

size (Krebs, 1989; Dale et al., 2002), we used three different

quadrat sizes: 10 cm � 10 cm (25 quadrats), 5 cm � 5 cm
Table 2

Morisita’s index of dispersion (I) calculated for three different quadrat sizes for

Pattern Density (plants m�2) N Si

10

Uniform 204 3 0.

449 4 0.

721 4 0.

Random 204 3 0.

449 4 0.

721 4 1.

Row 204 4 1.

449 4 1.

721 4 1.
(100 quadrats), and 2.5 cm � 2.5 cm (400 quadrats) within

the 0.25 m2 sampling area. This range of resolutions is

based on the average area per individual over the range of

densities from approximately 100 to 1000 seeds m�2, which

includes our actual range of sowing densities used in the

study, as recommended in studies of Morisita’s index

(Cressie, 1993).

2.1. Statistical analyses

We analyzed mean polygon area (=1/[seedling density])

and the following measures of spatial aggregation: CV of

polygon area, mean polygon shape ratio, and Morisita’s

index (at three different resolutions), for the three sowing

patterns at the three densities with four replicate blocks.

Data were analyzed using analysis of variance.

We also analyzed the spatial parameters influence on crop

and weed performance. In a general linear model, sowing

density was included as a class variable (factor with three

levels) and the measures of spatial aggregation (derived

from polygons or Morisita’s index) as continuous variables.

To achieve homogeneity of variance the weed biomass was

square root transformed.

Two plots (one random pattern, low density, and one

uniform pattern, low density) were excluded from the

analysis due to errors in sowing, which resulted in totally

inappropriate seedling densities.
each sowing pattern and sowing density

ze of sampling unit (quadrat)

cm � 10 cm 5 cm � 5 cm 2.5 cm � 2.5 cm

8141 0.3872 0.7741

8897 0.7252 0.4615

9326 0.7216 0.5115

8869 1.1238 1.0152

9349 1.0590 1.1585

0063 1.1211 1.2498

3403 2.1096 3.7566

0903 1.9005 3.1709

0577 1.8896 2.8451
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Table 3

Effects of quadrat size on Morisita’s index

Num-DF Den-DF 10 cm � 10 cm 5 cm � 5 cm 2.5 cm � 2.5 cm

F-value P-value F-value P-value F-value P-value

(a) Source

Pattern 2 29 7.95 0.0023 57.62 <0.0001 24.31 <0.0001

Density 2 29 0.29 0.7488 0.01 0.9859 0.38 0.6858

(b) Least squares means

Uniform vs. random 0.4142 0.0011 0.1658

Uniform vs. row 0.0009 <0.0001 <0.0001

Random vs. row 0.0081 <0.0001 <0.0001

(a) Analysis of variance, type 3 fixed effects of sowing density and sowing pattern on Morisita’s index (I) for different sampling unit (quadrat) sizes:

10 cm � 10 cm, 5 cm � 5 cm and 2.5 cm � 2.5 cm. (b) Least squares means comparisons of sowing patterns for the different quadrat sizes. The intermediate

quadrat size distinguishes the best among the sowing patterns.
3. Results

3.1. Polygon-derived pattern parameters

The polygon parameters clearly distinguish among

the three patterns (Table 1). There were unexpected and

significant differences among patterns in both measures of

crop density: mean polygon area (Table 1) and field

emergence. The random pattern was significantly lower in

density, as measured by number of polygons, than the row

pattern ( p = 0.002), especially at lowest sowing density.

Four days later, the emergence percentage, based on the

intended sowing densities, was 98.8% in uniform, 92.8% in

random and 89.8% in row patterns, but these differences

were not significant ( p = 0.1987; data not shown).

Both CV of polygon area and mean shape ratio disti-

nguished clearly among the sowing patterns ( p < 0.0001, all

pair-wise comparisons p < 0.002).
Table 4

Analysis of variance (type 1 fixed effects) of crop biomass on density and a me

Measure of spatial aggregation Source

CV of polygon area

Block

Density

Aggregation

Mean shape-ratio (S)

Block

Density

Aggregation

Morisita’s index (I), 10 cm � 10 cm quadrats

Block

Density

Aggregation

Morisita’s index (I), 5 cm � 5 cm quadrats

Block

Density

Aggregation

Morisita’s index (I), 2.5 cm � 2.5 cm quadrats

Block

Density

Aggregation
3.2. Morisita’s index

Quantifying spatial aggregation with Morisita’s index

also makes a clear distinction among the different sowing

patterns (Tables 2 and 3a). However, pair-wise tests

(Table 3b) indicate that random and uniform patterns are

only different at one of three resolutions (5 cm � 5 cm).

3.3. Crop and weed biomass

In all cases, both sowing density and spatial parameters

had highly significant effects on both crop (Table 4) and

weed biomass (Table 5). All densities were significantly

different from each other. Models based on each of the

spatial parameters and density accounted for much of the

variation in both crop (Fig. 2; Table 4) and weed biomass

(Fig. 2; Table 5). In general, the models accounted for over

74% of the variation in crop biomass production (Table 4)

and over 80% of the variation in weed biomass (Table 5).
asure of spatial aggregation (a polygon parameter or Morisita’s index)

DF SS P-value r2

0.7703

3 72505 0.0644

2 731075 <0.0001

1 90599 0.0036

0.7458

3 74085 0.0818

2 695074 <0.0001

1 62956 0.0180

0.7729

3 55694 0.1223

2 613876 <0.0001

1 93372 0.0030

0.7812

3 68821 0.0651

2 653337 <0.0001

1 101973 0.0018

0.8090

3 77373 0.0294

2 584703 <0.0001

1 131087 0.0003
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Table 5

Analysis of variance (type 1 fixed effects) of square root of weed biomass (g m�2) on density and a measure of spatial aggregation (a polygon parameter or

Morisita’s index)

Measure of spatial aggregation Source DF SS P-value r2

CV of polygon area 0.8537

Block 3 44.20 0.0021

Density 2 329.04 <0.0001

Aggregation 1 34.34 0.0006

Mean shape-ratio (S) 0.8136

Block 3 39.83 0.0111

Density 2 313.43 <0.0001

Aggregation 1 17.75 0.0021

Morisita’s index (I), 10 cm � 10 cm quadrats 0.8535

Block 3 36.90 0.0054

Density 2 279.26 <0.0001

Aggregation 1 34.84 0.0006

Morisita’s index (I), 5 cm � 5 cm quadrats 0.8517

Block 3 40.15 0.0038

Density 2 298.71 <0.0001

Aggregation 1 34.07 0.0007

Morisita’s index (I), 2.5 cm � 2.5 cm quadrats 0.8609

Block 3 46.55 0.0012

Density 2 272.53 <0.0001

Aggregation 1 38.01 0.0003
Models including both CV of polygon area and mean

polygon shape-ratio (data not shown) did not account for

more variation in crop or weed biomass than did models with

either of these alone.
4. Discussion

4.1. Describing the degree of spatial aggregation

Morisita’s index has been used extensively in ecology, but

it has recently come under criticism. The major criticism has

been that indices like Morisita’s do not show characteristics

of patterns at multiple scales very well (Cressie, 1993). In

many experimental studies in agriculture, such as those on

crop–weed competition, scale is not a major issue, because

most comparisons are made at the same scale—the

experimental plot as a sample of an agricultural field.

While there may be differences in crop and weed densities

and local conditions at higher scales in the field, it is

reasonable to assume that these effects do not alter the nature

of crop–weed competition at the local scale.

In many ecological studies, the objective of spatial

analysis is to measure deviations from complete spatial

randomness, and to describe the type of aggregation

observed. In our studies, we already have much control

over and information about the spatial pattern. Morisita’s

index is well suited for our purpose, and it distinguished

clearly among the different patterns (Table 3). Morisita’s

index provides a simple quantitative description of pattern,

which may be useful in future studies of crop and weed

performance.
In general, sowing pattern is highly significant

determinant of all polygon-derived parameters (Table 1).

The CV of polygon area, mean of shape-ratio and standard

deviation of shape-ratio, also provide a quantitative

description of pattern, which may be useful in studies on

crop and weed performance. The significant difference in

mean polygon area among patterns (Table 1) were most

likely due to differences in germination rate and speed

resulting from the different sowing technique used rather

than differences in sowing rates. The use of precision

seeders is known to give higher field emergence values

(Heege and Billot, 1999).

The spatial analyses used here are two-dimensional, and

do not consider the relative height of crop and weed

(Mohler, 2001). In models based on polygons, it is

assumed that all plants utilize resources in the same way

and have the same initial sizes and growth rates. Size

differences that exist before the onset of competition have a

major influence on subsequent competitive interactions

(Weiner, 1990), but it is difficult to include such differences

in analyses in which all points are equal except for their

locations.

4.2. Timing of spatial analyses of crop plants

Photographs to be used in analyses of crop spatial

pattern have to be taken before plants develop so much that

it becomes difficult to distinguish individual plants when

digitizing the photos, but late enough to ensure that all

seedlings have emerged. In our study, the plants were sown

on 9 April and plots photographed on 2 May, but there was

additional emergence in the random pattern over the
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Fig. 2. Weed biomass (left column) and crop biomass (right column) plotted against CV of polygon area; mean shape ratio (middle) and Morisita’s index at

5 cm � 5 cm quadrat size (bottom) at high density, 721 plants m�2 (triangles); medium density, 449 plants m�2 (crosses); low density, 204 plants m�2 (circles).

Lines are least-square regressions for each quadrat size.
following 4 days. The difference in germination/actual

density at the time of photographing the plots were

primarily caused by a delay in germination in the random

treatment, where the seeds were dropped on the soil

surface and subsequently covered with soil. Seeding depth

was apparently greater in this case, resulting in slower

germination.
4.3. Crop and weed biomass

Crop density was a major determinant of both crop and

weed performance, as reported in numerous previous studies

(e.g. Radford et al., 1980; Samuel and Guest, 1990;

Blackshaw, 1993; Murphy et al., 1996; Doll, 1997; Weiner

et al., 2001; Olsen et al., 2005, in press).
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Together with sowing density, models including either

Morisita’s index, CV of polygon area, mean polygon shape-

ratio or standard deviation of polygon shape ratio accounted

for 75–81%, the observed variation in crop biomass

(Table 4), and 81–86% of the variation in weed biomass

(Table 5). While the effect of density was much stronger,

measures of spatial aggregation made a significant

contribution to accounting for variation in crop and weed

biomass in every case. Thus, we consider the use of both

Morisita’s index and the polygon-derived pattern parameters

presented here as appropriate analytic tools in research on

impacts of spatial pattern on crop–weed competition.

Morisita’s index appears to perform slightly better than

polygon-based parameters.

Improving the spatial distribution of crop plants in the

field can have significant agronomic advantages, such as

improved germination and yield uniformity and quality, as

well as increased weed suppression. Such improvement may

be relatively easy to achieve, but neither uniform nor random

sowing patterns are currently used in grain production.

There is a need for new sowing methods to realize the

potential advantages of a more uniform spatial distribution

of crop plants. Such new methods would most likely be

based on a decrease in row width accompanied by an

improved distribution of seed spacing within the row. The

quantification of spatial pattern should prove useful in

comparing different sowing techniques (Griepentrog, 1999).

In conclusion, research on plant production needs to go

beyond the description of crop spatial pattern as a qualitative

variable or in only one dimension. The quantitative

measures of pattern used in the present study provide a

useful basis for further and more generalized comparison of

the spatial patterns of individual plants in agricultural

studies. Morisita’s index has the advantage of being a single

value, whereas Thiessen polygons provide much more

detailed information at the individual scale, but we do not

yet know how to best summarize this information in the most

biologically and agronomically meaningful way.
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