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Abstract

A coupled map lattice (CML) model is used to analyse the role of neighbourhood effects and competition on
spatial patterns and size hierarchies in annual plant monocultures. The results are compared with those from a
traditional model of circular zones, and show that the CML results are highly robust over a range of densities.
Asymmetric competition is observed to give rise to increased size variability compared to symmetric competition.

Spatial effects are concluded to be secondary to the degree of competitive asymmetry.
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1. Introduction

In this paper we examine two of the major
processes that are commonly thought to govern
spatial and morphological patterns in plant
monocultures. These are (1) neighbourhood /spa-
tial effects and (2) the form of competition be-
tween individuals (Mead, 1966; Mack and Harper,
1977; Weiner, 1990). We are particularly con-
cerned with the effect that these processes have
on individual plant growth and the generation of
size hierarchies in monocultures, because size
directly affects both survival and fecundity.

Most plant populations show great variability
in plant size, and there has been much interest in
the determinants of size variation (Benjamin and
Hardwick, 1986; Weiner, 1986). With a few no-
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table exceptions (Turner and Rabinowitz, 1983;
Ellison, 1987), populations of plants grown at
higher densities show greater size inequality than
populations grown at lower densities (Weiner and
Thomas, 1986; Schmitt et al., 1987; Knox et al.,
1989). Two alternative views of how competition
contributes to the generation of size hierarchies
have been advanced. One view holds that compe-
tition among plants is usually asymmetric, i.e.
larger plants are able to obtain a disproportional
share of contested resources, suppressing the
growth of smaller plants; this asymmetry exagger-
ates size differences (Weiner, 1990). An opposing
view emphasizes the role of spatial effects. Be-
cause plants do not grow in a perfectly uniform
pattern, individuals vary in the degree of crowd-
ing they experience. Hence variation in growth
rates, caused by differences in local neighbour-
hood conditions, leads to size differences (Bonan,
1988,1991).
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A full mechanistic understanding of plant
competition is far beyond our present under-
standing. We know that competition depends
upon which resources are being contested
(Fowler, 1984) and on plant morphology (Geber,
1989). Larger plants shade smaller ones, so com-
petition for light appears to be asymmetric
(Weiner, 1990), but competition below ground
may be more symmetric (Weiner, 1986; Wilson,
1988). The presence of density-dependent mortal-
ity (self-thinning) has complicated these ques-
tions, because it is the smallest plants that die,
reducing the size variation. Since plant competi-
tion is local, spatial structure of the population is
believed to be very important, but this has proved
difficult to demonstrate.

We present the results from two different
models aimed at (i) examining the effects of space
and competition on individual plant growth and
(ii) generating testable results on the relation-
ships between size variability, density depen-
dence, self-thinning and growth rates for further
field studies. Both models use an individual plant
approach, as this is thought to be the appropriate
level on which to measure plant growth (Silander
and Pacala, 1985; Czaran and Bartha, 1992; Ford
and Sorrensen, 1992; McGlade, 1993; Judson,
1994) In particular we test:

- the assertion by Bonan (1988,1991) that a posi-

tive relationship between density and size in-

equality is evidence for neighbourhood effects
and does not indicate the presence of competi-
tive asymmetry.

- the claim by Miller and Weiner (1989) that
neighbourhood effects without asymmetry can
only give rise to a positive relationship between
density and size inequality over a range of very
low densities. In their models increasing in-
equality at higher densities occurred only when
competition was asymmetric.

Our main model is a coupled map lattice (Has-
sell et al., 1991; Bignone, 1993) based on a square
grid. The second model comes explicitly from
Bonan (1988,1991) and uses circular zones of
influence about each plant; the only difference is
that we treat the boundaries as continuous or
wrap-around. These schemes are both appropri-
ate for modelling sessile organisms. In each case

the overlaps between neighbouring plants are cal-
culated and the growth modelled for four types of
competition (absolute asymmetry, relative asym-
metry, absolute symmetry, relative symmetry).
Stochasticity is limited to the random distribution
of seedlings in the stand, so that neighbourhood
effects are isolated. Whilst previous models have
considered uniform patterns of plants, these are
not realistic for natural populations and so we did
not use them here. Finally, because density-de-
pendent mortality has been said to mask the
effects of asymmetric competition, we have sup-
pressed death by restricting growth to be non-
negative.

2. The coupled map lattice model (CML)
2.1. Coupled map lattice models

A coupled map lattice (CML) is usually based
on a square grid of cells. Each cell has a continu-
ous variable which is updated every time step as a
function of its own value and those of the cells in
a specified neighbourhood. In contrast with cellu-
lar automata (Wolfram, 1986; Ermentraut and
Edelstein-Keshet, 1993), the values are not re-
stricted to integers and are generated determinis-
tically. A toroidal coupled map lattice is one in
which the boundaries are periodic (Haefner et
al., 1991). The neighbourhood of any cell on a
boundary includes cells on the opposite bound-
ary; the left and right boundaries are considered
to be joined, likewise the top and bottom edges.

2.2. The mathematical model

Our model uses a toroidal CML where the
value of each cell represents the mass of the
plant present. The mass is given as a proportion
of the maximum possible plant size attainable by
an uninhibited plant, multiplied by a factor of 1.1.
This factor allows for possible over-shooting
caused by the discrete nature of the mathematical
model. Each cell has a fixed area equal to one
fifth of the maximum area attainable by a plant
grown under the conditions set by the model.
This is justified as follows. The (‘von Neumann’)
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Fig. 1. Configuration of the lattice cell neighbourhood.

neighbourhood of a cell consists of its four near-
est neighbours and itself — a total of five cells
(Fig. 1). As this is a model of competition be-
tween plants, we have restricted plant growth so
that it is never larger than its neighbourhood (or
zone of influence). If this rule were violated, the
plant would grow into regions where the model
could not treat the interactions. Hence a suitable
cell size is one fifth of the maximum area occu-
pied by a single plant. The following mathemati-
cal model controls the growth of the plants
through time. It is an extension of the model of
Aikman and Watkinson (1980) and includes ex-
plicit spatial effects.

The change in mass (Am,) of plant i from one
time step to the next is given by Eq. 1. a; is the
area covered by plant i and is given by the ‘3/2
self-thinning rule’ of Eq. 2 (Westoby, 1984). /; is
the growing area lost via competition, g is the
intrinsic growth rate of the plant, b and c are
constant parameters and At is the time step.

Ami‘“(g(ai_li) —bm,-z)At (1)
a,= o’ @

We need to establish the lost growing area for
a plant in the lattice as a result of the competitive
regime under consideration. This involves finding
the areas by which neighbouring plants overlap
each other. Firstly, the maximum size for a plant
that is not experiencing competition m™>* is ob-
tained from Eq. 1 by taking /;, =0 and Am,=0:

gc 3/4
i)

g0, = b > mp= — |

Hence, by Eq. 2, the area of each lattice cell, «,
as the maximum mass is divided over five sites, is:

c [g
T35V

Assuming that a plant overflowing its own cell
expands equally into the areas occupied by its
four neighbours, the overlap into a neighbouring
cell of plant i is:

max 1’

and hence the total overlap between two neigh-
bours { and j is:

a,—a 0)+ a;,—a 0)
7 max( 1

The overlap is nonlinear because of the pres-
ence of the ‘max’ function, but it is continuous in
terms of both of the plant masses. A discontinuity
arises in the derivative (which is a Heaviside step
function), but this reflects the underlying biologi-
cal assumption that plants do not interact until
they reach a certain size. The circular neighbour-
hood model also implicitly contains this same
nonlinearity. This pairwise overlap function leads
to Eq. 3, which gives the total overlap of the area
of the plant, ;. nhd denotes the four-cell neigh-
bourhood described above. (This is not a perfect
model of the overlap of areas, but is a good
approximation of the infinitely recursive series of
overlaps that would have to be considered for an
exact representation.)

Q,;= max(

a. — a a.—a
0= Y max( d ,0)+max( ! ,0)
jenhd 4 4

(3

The area lost to competition, /;, depends on
the four types used in the model:

- For absolute asymmetry, the larger plant of two
plants takes resources from the entire overlap
area; equal-sized plants will share the area
equally,

- For absolute symmetry, plants divide the area
equally.



84 RJ. Hendry et al. / Ecological Modelling 84 (1996) 81-90

- For relative situations, the overlap is weighted
by the relative masses: linearly for relative sym-
metry, quadratically for relative asymmetry.
Hence Eq. 4 can be derived to give the total

area lost to competitors under the different

regimes, respectively:
1
Z 591, j
jenhd
M
jenhd m; + mi
l;= 2 (4)

Z 2 ) ZQ’LJ'

jenha i T

i

As self-thinning may mask the effects of local
neighbourhood interactions and variations in
competitive regime, density-dependent mortality
is suppressed in this model. When Am; < 0, plant
growth is prevented by setting this increment to
ZEro.

2.3. Analysis of the basic model

The model of Eqgs. 1 and 2 is appropriate for
annual plants. This section considers the density-
dependent behaviour of the model when applied
to a symmetric mean field or non-spatial sce-
nario. If a certain number of plants is grown in a
fixed area, then, under symmetric competition,
each plant has a fixed maximum growing area,
denoted by A. If the plants are able to reach the
maximum mass, m™ = (gc/b)>/* before they
suffer competition, then clearly the plants grow
to this terminal size. If they fill the available area,
no further growing space exists and their growth
is restricted. This modifies the maximum size by
changing the growing area q, to A, so that m™* =
vgA/b . There is thus a threshold density, above
which the maximum plant mass is constrained.

This threshold can be determined by setting the
area in Eq. 2 to A. Hence the density-depen-
dence of the terminal mass is given by:

V2 e
5"

Hence the maximum yield per unit area, Y,
can be obtained in terms of the density, p =1/4:

3/4
(%)
gp
V b
However, the maximum yield does not become
infinite as growing space declines to zero, be-
cause the growing time is restricted for annual

plants. A suitable range of densities for the model
must therefore be estimated.

V%
=

3. The circular neighbourhood model

An alternative spatial model of plant monocul-
ture development involves the construction of
circular neighbourhoods (or ‘zones of influence’)
(Ford and Diggle, 1981; Firbank and Watkinson,
1985). The simulations allow plants to grow on a
square plot. The plot edges are treated toroidally,
as with the coupled map lattice. Seedlings are
randomly distributed over the plot and growth is
simulated using the same model as before (Egs. 1
and 2). The technique for allocation of seedlings
ensures that the zones of influence do not ini-
tially overlap so that competition cannot occur
immediately. The area of a plant (Eq. 2) is trans-
lated into a circle of appropriate radius centred
on the plant.

The spatial scheme is illustrated in Fig. 2,
which represents a plot occupied by eight plants,
labelled A to H. Plants A and B overlap the plot
edge. In order that the plot may be treated as a
torus, A* and B* are created as imaginary or
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Fig. 2. Schematic representation of eight plants, A-H. A* and
B are ‘virtual’ plants, generated to satisfy the toroidal (peri-
odic) boundary conditions.

‘virtual’ plants. These have ‘real’ effects on
neighbours E and F (respectively). Thus G and H
have no close neighbours; B, C and F have one
neighbour; D and E have two neighbours; A has
three neighbours (D, E and F). Plant C is entirely
within the zone of influence of plant D and under
absolutely asymmetric competition would not be
able to grow.

To calculate the growing area lost to competi-
tion, /;, the overlaps between neighbouring plants
are needed. The overlap between two interfering
neighbours, i and j, with zones of radius p and g
respectively, which are a distance d apart, is:

2 2 2
p t+di—q
Q,.}:pzcos‘l _—
’ 2pd
R . q2+d2—p2
+g“cos | ——
2qd
) q2+d2—p2
—gd sin|cos ™Y —M—
2qd
where:
cm?/? cm?/3
p= and g = d

T w

If one plant is entirely contained within the
zone of influence of another, then the overlap is
equal to the area of the smaller circle (cm?/?).
The lost growing area is then calculated accord-
ing to the type of competition, as in Eq. 4. In this
model the neighbourhood nhd of plant i consists
of all plants whose zones of influence overlap
plant {. Again, mortality is avoided by constrain-
ing the mass increment to obey Am; > 0.

4. Population statistics and simulation parame-
ters

4.1. Statistical measures

The following statistics were used to examine
the plant population statistics of the two models.
The mean mass u (Eq. 5) is averaged over the
lattice /plot, denoted by L. The coefficient of
variation (Eq. 6) is the standard deviation ad-
justed for the mean mass. This provides a good
measure of the variability within a population.
Another indicator of variability is the Gini coeffi-
cient, which is related to the Lorenz curve of
cumulative frequencies. Eq. 7 gives a relatively
unbiased estimator of the Gini coefficient for
[|IL]|> 100 (Weiner and Solbrig, 1984; Dixon et
al., 1987; Bendel et al., 1989).

1
iel
2
1 o (mi—np)
coefficient of variation = — ), ————  (6)
w2 -1
Y Xlim- m;|
.. . . el jelL
Gini coefficient = - 7
2NLI(ILI- 1) ™
Table 1
Parameter values for the growth equations 1 and 2
g 25 gm™ 2 day™!
b 0.00147 g day !
c 0.00434 m~2g=2%/3
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4.2. Computational details

Table 1 gives the parameters for Eqs. 1 and 2,
which are taken from Bonan (1991). A time step
of Az = 1 day was used, after comparative simula-
tions showed negligible need for smaller steps.
Seedlings are sown with size 0.1g, which is small
enough (by several orders of magnitude) to en-
sure that there is no competition in the first few
times steps. Previous studies of spatial plant
growth involve the variation of the initial mass
and parameters g, ¢ or b. These variations are
usually taken to be Gaussian. Such distributions
are often used to represent a variety of biological
phenomena, e.g. genetic variation, micro-environ-
mental heterogeneity and variation in seedling
emergence times. The parameters are taken to be
constant here so that spatial /neighbourhood ef-
fects and the influence of the competitive regime
may be studied. Runs with a uniform distribution
of initial seedling mass between 0 and 0.1g pro-
duced very similar results to those with a constant
seedling size of 0.1g.

The CML model was run on grids of 20 by 20,
50 by 50 and 100 by 100 cells. Densities are
expressed here as the proportion of cells occu-
pied by plants, ranging from 0.1 to 1.0. The
circular neighbourhood model was run on a
square plot with dimensions of 0.1m. Densities
are given in terms of the number of plants ran-
domly distributed on this plot; specifically the ten
values are 7, 19, 37, 61, 91, 127, 181, 233, 291 and
355 plants, as used by Bonan (1991). This range
extends to higher values than the CML; the latter
is restricted by the ratio of neighbourhood size to
cell size. Repeated simulations were run to pro-
duce smoother averaged results. The statistical
variables considered are mean, coefficient of vari-
ation and Gini coefficient. The distribution of
sizes was also considered.

5. Results
5.1. Coupled map lattice model

The growth of plants through time, for five
different densities in the range 0.2 to 1.0, is
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Fig. 3. Mean mass (proportion of maximum isolated plant
size) of plants grown under a coupled map lattice model as a
function of time. The five curves show different densities,
from 0.2 (- - - ) to 1.0 (—) rising in steps of 0.2. Competition is
absolutely symmetric.

illustrated by Fig. 3. The absolute symmetric
regime is illustrated here, but the form of growth
is similar for all of the types of competition. The
mass is seen to increase sigmoidally with time and
to decrease as density rises. Equilibrium has been
(approximately) attained within the 200 time
steps. These results shown are those obtained
from a 20 by 20 grid. The model was also run for
larger grid sizes, but as the growth did not differ
in any way, we have used a smaller grid size for
computational speed.

The model was then run for 200 time steps
(=200 days) on a 50 by 50 lattice, for ten differ-
ent densities in the range 0.1 to 1.0. The results
were averaged over 50 simulations. Figs. 4a—c
give the dependence on density of mean mass,
coefficient of variation and Gini coefficient.

The distribution of plant sizes after 500 time
steps is shown in Figs. 5a—d for density 0.5. These
graphs were produced by a single run on a 50 by
50 lattice. The large time used ensured that the
equilibrium was reached in all cases. At this
density of 0.5, the distributions contain fewer
peaks as the degree of asymmetry increases, but
they become narrower. When the density was set
at 1.0, we obtained a single very sharp peak for
all competitive types.
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Fig. 4. (a)—(c) Results for the CML model at time 200 days.
(a) Mean mass (proportion of maximum isolated plant size) as
a function of density. (b) Coefficient of variation of mass as a
function of density. (c) Gini coefficient of mass as a function
of density. (d)—(f) Results for the circular neighbourhood
model at time 100 days. (a) Mean mass (gm) as a function of
number of plants (equivalent to density). (¢) Coefficient of
variation of mass as a function of number of plants. (f) Gini
coefficient of mass as a function of number of plants. In all
cases the competitive types are absolute symmetry (—), rela-
tive symmetry (---), relative asymmetry (-----) and absolute
asymmetry (- ).
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Fig. 5. Distribution of plant sizes at time 500 and density 0.5
for the CML model, as a percentage of the maximum size of
an isolated plant. (a) Absolute symmetry. (b) Relative symme-
try. (¢c) Relative asymmetry. (d) Absolute asymmetry.

5.2. Circular neighbourhood model

The model was run for 100 time steps at ten
different densities (7 to 355 plants in the plot)
and the results averaged over 100 simulations.
Figs. 4d—f give the dependence on density of the
three statistics of mass: mean, coefficient of vari-
ation and Gini coefficient. The model was run for
the higher densities of 400, 450, 500 and 550, but
the results showed no different behaviour. It
should be noted that these new results using
Bonan’s model are different from those reported
in Bonan (1991), in particular the results here are
smooth due to the number of replicated runs.

5.3. Self-thinning

Whilst the condition Am; > 0 prevents
density-dependent mortality, it is of interest to
find the extent to which this constraint is imple-
mented. The two models were run for 100 time
steps and the number of plants where the mass
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Fig. 6. The proportion of plants which stop growing by time
100 days. (a) CML model, shown as a function of density. (b)
Circular neighbourhood model, shown as a function of initial
number of plants. In both cases the competitive types are
absolute symmetry (—), relative symmetry (- - -), relative asym-
metry (-----) and absolute asymmetry ( ---). (The values are
so low in the CML model for absolute symmetry (a) that the
curve (—) is not easily distinguished from the horizontal axis).



88 R.J. Hendry et al. / Ecological Modelling 84 (1996) 81-90

increment was reset to zero was found as a func-
tion of density. The circular neighbourhood model
was run once because of the highly intensive
computation, whereas the CML was averaged
over 50 simulations. Figs. 6a and b illustrate the
results. The degree of self-thinning that would
occur, if permitted, increases with the level of
asymmetry, particularly for the CML.

6. Discussion

Our results show that the mean mass de-
creases as density increases (Figs. 4a and d).
Because mass in the CML is given as a propor-
tion of maximum isolated plant size, it is clear
that size has been constrained by competition.
We would thus consider competition to be a
boundary constraint on plant size as previously
described by Goldberg (1987).

Growth of the plants is sigmoidal, so the early
phase is exponential. Turner and Rabinowitz
(1983) claim that variation in the early exponen-
tial phase of growth leads to the generation of
size hierarchies, However, we have found that
interference does not occur immediately, as mass
is the same for all densities for the first 50 or so
time steps (Fig. 3). As the initial plant masses are
constant and no competition occurs during the
early part of growth, there can be no size hierar-
chy formation at this stage. Variation in growth
rates can thus only occur when competition sets
in after the exponential stage of growth.

The mean mass of plants is similar for all the
competitive schemes, except for the absolute sym-
metry in the CML (Fig. 4a). This may be at-
tributed to the equal sharing of resources, i.e. two
neighbours of a similar size in adjacent cells
prevent each other growing. If there is any asym-
metry present, at least one of the plants is able to
grow. Because of this, the even spacing of plants
caused by the regularity of the lattice and inter-
ference by neighbours the total population yield
is suppressed.

The coefficient of variation and Gini coeffi-
cient demonstrate the existence of variation in
the population allowing us to see that size hierar-

chies are formed (Figs. 4b, ¢, e and f). The
variation increases as the density rises, because
higher densities lead to carlier and stronger inter-
actions between plants. The variation is consider-
ably greater with absolute asymmetric competi-
tion. There is a clear difference between the
coefficient of variation for relative symmetry and
absolute asymmetry, which are the most com-
monly considered modes of competition (Figs. 4b
and e¢). The difference is less marked with the
Gini coefficient (Figs. 4c and f). Bendel et al.
(1989) have noted that the coefficient of variation
is more sensitive to hierarchy differences than the
Gini coefficient. It is therefore reasonable to
state that the formation of hierarchies can distin-
guish between symmetric and asymmetric compe-
tition, as claimed by Miller and Weiner (1989)
and Weiner (1985,1986,1990) but disputed by Bo-
nan (1988,1991). There is, however, some varia-
tion even in the symmetric case. This confirms
that spatial /neighbourhood effects do play a role
in the generation of size variability (Bonan,
1988,1991), but they are secondary to the compet-
itive regime. The use of the four different symme-
tries illustrates the progressive nature of competi-
tion mechanisms. It is relevant to express the
conclusion as follows: higher variability at higher
densities implies greater asymmetry in neighbour-
hood interactions.

There is a sudden decrease in all the mass
statistics at the highest density of the CML (Figs.
4a—c) which is caused by the regularity of the
lattice. This is because for low and intermediate
densities, the plants are scattered through the
grid, whereas when the lattice is full (density 1.0),
the plants are necessarily regularly spaced, so the
randomness of the spatial distribution is lost. The
rate of increase in the coefficient of variation and
Gini coefficient for both models falls off as den-
sity rises. This reflects a decrease in the effective
randomness of the distribution as the initial den-
sity of plants is increased. There is less variation
at higher densities in the overlapping of zones of
influence and so the growth rates and hence the
plant sizes are more similar.

The hierarchy is still able to remain strong in
the asymmetric case and there is a large variation
in plant sizes (Figs. 5¢ and d). Here the asymme-
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try dominates the plant growth and the distribu-
tion is of secondary importance in determining
the final population structure. The size distribu-
tion plots (Figs. 5a—d) give an insight into the
effects of the degree of asymmetry on the popula-
tion structure. Symmetric competition results in a
wide distribution, which is skewed to the right
because of the suppression of mortality. Absolute
asymmetry restricts the plants to a discrete set of
sizes.

The levels of self-thinning (Figs. 6a and b)
exhibit an appreciable difference between the
two models. The coupled map lattice shows that
greater asymmetry leads to more density-depen-
dent mortality, as suggested by Bonan (1988). The
self-thinning is less dependent on symmetry in
the circular neighbourhood model. Greater asym-
metry means that large plants cause the death of
smaller plants, whereas with symmetry, similar
neighbours will reduce each others’ growth rather
than bring about death. These discrepancies be-
tween the models demonstrate that the type of
spatial distribution used is important.

The comparison of the two types of model
(CML and circular neighbourhood model) high-
lights the issue of the aims of ecological mod-
elling (Wissel, 1992). The excessive computation
of the latter type of model limits the extent of
investigation of the system. The CML allows criti-
cal mechanisms to be quickly and thoroughly
studied and general results extracted; it is ideal
for use at low and intermediate densities. The
current implementation of the CML does have
the shortcoming of limiting the upper end of the
density range. However, the model is suitable for
extension to higher densities by developing the
use of larger neighbourhoods (such as the 9-cell
‘Moore’ neighbourhood).

In summary, the results of both models sup-
port the view that size hierarchies can be used as
evidence to distinguish between asymmetric and
symmetric competition (Weiner and Thomas,
1986) over the alternative view that size hierar-
chies are evidence for neighbourhood effects
(Bonan, 1988,1991). Theory suggests that asym-
metric competition can be a key factor in deter-
mining size variation in plant populations and
communities.
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