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Summary

1

 

We modelled the growth in estimated biomass of individuals in experimental popu-
lations of 

 

Chenopodium album

 

 grown at two densities and measured sequentially nine
times over 128 days. Competition is modelled by coupling individual growth equations
and, within the population, the growth rate of a plant at any point in time is a function
of its size to the power 

 

a

 

, a measure of the degree of size-asymmetry of competition.

 

2

 

The growth of individuals in these crowded populations was significantly better fit by
a Richards growth model than by models with one fewer parameter (e.g. logistic or
Gompertz growth models). The additional parameter determines the location of the
inflection point and provides great flexibility in fitting growth curves. Density had a
significant effect on this parameter.

 

3

 

At the higher density, the maximum size that plants achieved was decreased and the
exponential phase of growth was reduced. The estimate of the size-asymmetry para-
meter 

 

a

 

 was always greater than 1 and it increased significantly at the higher density.
Growth was reduced and the number of very small individuals increased at the higher
density, although a few plants still achieved a large size.

 

4

 

Our approach combines several recent innovations in the modelling of  stand
development, including (a) modelling of individual growth with biologically meaningful
growth models and (b) modelling the relationship between size and growth of individuals
within the population. Sequential, non-destructive data on the growth of individuals
over time, in combination with modern statistical computing techniques, can lead to
major advances in the modelling of plant population development, providing powerful
tools for exploring variation in individual growth and for testing a wide range of
hypotheses.
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Introduction

 

The last two decades have seen major advances in the
description and modelling of the development of
crowded plant populations. The study of plant com-
petition began with the study of density-dependence: the
analysis of the relationship between mean plant yield
and density at one point in time (Bleasdale & Nelder
1960; Watkinson 1980; Vandermeer 1984; Damgaard

1998). The characterization of density–yield relation-
ships has led to some important general patterns, but
such models are quite limited because (i) they are
usually based on a single harvest and therefore reflect
a static view of competition and (ii) they describe com-
petition only in terms of mean performance, ignoring
variation within the population. To address the first
problem, growth curves have been used to describe the
growth of an average individual over time (Evans 1972;
Causton & Venus 1981; Hunt 1982).

Already in the 1970s researchers had realized that
describing plant populations only in terms of mean
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behaviour was not adequate to address the most
interesting questions in plant population biology or in
applied fields such as forestry and agriculture, and
researchers began to investigate variation within
populations. The first step was the analysis of plant size
distributions (Obeid 

 

et al.

 

 1967; Ogden 1970; Turner &
Rabinowitz 1983; Weiner 1985). It soon became clear
that there are numerous possible interpretations for
any static size distribution. Plant population processes
are often better reflected in the changes that occur in
size distributions over time than in the distributions
themselves (Westoby 1982). One method for studying
changes in size distributions is to analyse the relation-
ship between the sizes of plants within a population at
a point in time (

 

t

 

) and their growth over a subsequent
interval (

 

t

 

 

 

→

 

 

 

t

 

 + 

 

x

 

). We refer generally to such models
as ‘size-growth’ models. Westoby (1982) called the
relationship between size and subsequent growth
increment (absolute growth rate) the ‘distribution-
modifying function’ (DMF), because the relationship
describes how the size distribution changes over an
interval. Hara (1984) expanded the DMF approach
into a full diffusion model, adding a diffusion term
(

 

D

 

[

 

t

 

, 

 

x

 

]) to describe the variation in growth rate to the
DMF or mean change term (

 

G

 

[

 

t

 

, 

 

x

 

]). Very large sample
sizes are needed to get a sufficient characterization of
the 

 

D

 

[

 

t

 

, 

 

x

 

] function and its interpretation has proved
problematic (Hara 1988), so most researchers have
looked only at DMF/

 

G

 

[

 

t

 

, 

 

x

 

] relationships and considered
variation in the growth rate at a given size to be random.
The ‘size-growth’ or DMF approach represented a
major advance in the modelling of plant population
developments, in that stand development was now seen
and modelled as a dynamic process.

‘Size-growth’ approaches have been criticized
because each time interval is treated separately: no
assumptions are made about the time course of plant
growth beyond the single growth interval analysed
(Weiner 

 

et al.

 

 1998). Empirical studies following the
growth of individuals (Stoll 

 

et al.

 

 1994; Nagashima 

 

et al.

 

1995; Weiner 1995a) have provided compelling evidence
for the advantages of looking at stand development in
terms of the growth of individuals over time, rather
than as a series of independent ‘snapshots’ or growth
increments. Models of stand development based on
explicit growth equations permit both increased
biological content and stronger statistical inferences
(Stoll 

 

et al.

 

 1994; Weiner 

 

et al.

 

 1998). Biological content
is increased because we can look at the influence of
different factors or treatments on model parameters
that have clear biological interpretations. Stronger
statistical inferences are possible because we can apply
what we know about individual plant growth curves, rather
than making no assumptions at all about plant growth.

Until now the individual growth modelling
approach has not explicitly modelled the interactions
among individuals. Individual growth modelling
has allowed us to look at the distribution of growth
parameters among individuals, and at the effects of

different treatments or factors on these distributions,
but the growth of each individual is modelled inde-
pendently of  the others. We can see the effects of
competition among individuals, but we do not model
these effects. Linking or coupling the growth equations
of individual plants can achieve this.

An early attempt to link growth equations for
individual plants was based on the classical Lotka–
Volterra equations, which were originally developed to
study intra- and interspecific competition in micro-
organisms and animals. Weiner & Thomas (1986)
modified the Lotka–Volterra model such that individual
plants (which can be considered populations of
modules) grow logistically in the absence of competition,
thus reflecting ‘intraindividual competition’, i.e. the
sigmoidal nature of plant growth. In such a model,
individuals compete with each other in basically the
same way that they ‘compete’ internally, and competition
coefficients are used to translate the effects of one unit
of biomass of another individual into the equivalent
effects of one unit of biomass of an individual on itself.
Weiner and Thomas (1986) used coupled equations to
show that such a simple ‘size-symmetric’ model of
competition, in which the effect of  competitors is
proportional to their size, predicts decreased or unchanged
size inequality in populations grown at higher densities.

Damgaard (1999) took this approach further, cou-
pling the growth of individuals, but also assuming that,
within the population, a plant’s growth rate at any
point in time is a function of its size to the power 

 

a

 

(Hara & Wyszomirski 1994; Schwinning & Fox 1995;
Wyszomirski 

 

et al

 

. 1999). In crowded populations, this
parameter is a measure of the degree of ‘size-asymmetry’
of competition (Weiner 1990; Schwinning & Weiner
1998). Although size-asymmetry is usually defined as
a disproportionate access to contested resources by
larger individuals (Weiner 1990; Schwinning & Weiner
1998; Berntson & Wayne 2000), it is usually observed
in terms of variation in growth. Inferring resource
acquisition from growth, Weiner (1990) argued that if,
within a crowded population of plants at a point in
time, plants’ growth rates are proportional to their sizes
(Fig. 1, curve for 

 

a

 

 = 1), this would be consistent with
the hypotheses of no competition or size-symmetric
competition. A convex relationship between the
absolute growth rate (AGR) and size (Fig. 1, 

 

a

 

 = 2) is
consistent with size-asymmetric, but not size-symmetric,
competition, because it implies a positive relationship
between relative growth rate (RGR) and size, and this is
considered evidence for size-asymmetric competition
(Schmitt 

 

et al.

 

 1987). Damgaard (1999) used a measure
of the curvature of the AGR-size relationship over all
time intervals as an estimate of  the degree of  size-
asymmetry of competition. Thus, the model offers the
possibility of combining the ‘growth-size’ and the
‘individual growth’ approaches to the modelling of
plant population development, assuming that the
growth of individual plants could be adequately
described by a logistic growth function multiplied by
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the power function of individual plant weights. Here,
we relax the assumption of logistic growth and gener-
alize the individual plant growth model to a Richards
growth function (Richards 1959; Seber & Wild 1989)
multiplied by the power function of individual plant
weight. We used the model to analyse the growth of

 

Chenopodium album

 

 populations grown at two dens-
ities, and asked the following questions:

 

•

 

Can coupled equations provide a reasonable description
of population development as a process of individual
growth as modified by competition?

 

•

 

What type of growth equation is sufficient to provide
an adequate general description of individual growth
of populations at different densities?

 

•

 

How does a change in density affect the growth
curves of individuals?

 

•

 

Is competition size-asymmetric in crowded 

 

Chenopodium
album

 

 populations? If  so, does the size-asymmetry of
competition increase with density?

 

Materials and methods

 

Chenopodium album

 

 L. (Chenopodiaceae) is a broad-
leaved summer annual that often colonizes in open fertil-
ized habitats (Grime 

 

et al.

 

 1989) Growth of individuals
in 

 

C. album

 

 populations was followed at three dens-
ities through the growing season. On 8 June 1990, the
seeds, which had been collected from a natural popu-
lation in a suburb of Tokyo in the previous year, were
sown in three 1 

 

×

 

 1 m plots in the Botanical Gardens,
Faculty of Science, University of Tokyo (139

 

°

 

45

 

′

 

 E,
35

 

°

 

43

 

′

 

 N). Emergence was first observed on 13 June.
The seedlings were thinned to 1, 2 and 7–10 plants per
subplot of 5 

 

×

 

 5 cm to make the plant densities 400, 800
and 3600 plants m

 

−

 

2

 

, respectively, on 28 June. For
plants in the central 30 

 

×

 

 30 cm portion of the plots,
height and diameter of the stems were measured non-
destructively at intervals of 1–4 weeks until the end of
the growing season (i.e. a total of 36 and 72 plants for
densities 400 and 800 m

 

−

 

2

 

, respectively; for the highest
density, 135 plants were measured in the central
15 

 

×

 

 25 cm). Height was measured from the soil

surface to the terminal shoot apex, and diameter was
measured just above the cotyledons. No fertilizer was
applied because the fertility level seemed to be sufficient
due to high organic matter from previous vegetation.
The populations were watered almost daily throughout
the experiments. The estimates of biomass at the first
measurement for the most crowded population (3600
plants m

 

−

 

2

 

) were not considered to be accurate enough
for the present purposes, so our analyses are restricted
to the two lower densities. For a complete description
of the experimental methods see Nagashima 

 

et al

 

. (1995).

 



 

The growth of 

 

n

 

 competitively interacting plants is
modelled by 

 

n

 

 coupled differential equations. The
growth of  an individual plant (

 

i

 

) is assumed to be
adequately described by the Richards growth model
(Richards 1959; Seber & Wild 1989), where the growth
rate is assumed to be a function of plant size:

eqn 1

 

v

 

i

 

(

 

t

 

) is the dimensionless size (estimated biomass) of
plant 

 

i

 

 at time 

 

t

 

, 

 

n

 

 

 

α

 

 is the maximum cumulative size
of the 

 

n

 

 plants, and 

 

κ

 

, 

 

δ

 

 and 

 

f

 

(

 

v

 

i

 

(

 

t

 

), 

 

a

 

) determine the
absolute growth rate of  the plant. The initial growth

rate is . The shape of the growth curve is mainly

determined by 

 

δ

 

. If  

 

δ

 

 > 0, then the growth curve is sig-
moidal, and the slope of the tangent at the point of
inflexion decreases with 

 

δ

 

  (Richards 1959; Seber &
Wild 1989). The Richards growth model is flexible and
includes the monomolecular (

 

δ

 

 = 0), von Bertalanffy
(

 

δ

 

 = 2/3), Gompertz (

 

δ

 

 = 1) and logistic models (

 

δ

 

 = 2)
as special cases (Richards 1959; Seber & Wild 1989).
Thus, the Richards model can be considered hierarch-
ical and therefore can be tested against these simpler
growth models. 

The saturating term,  or

if 

 

δ

 

 = 0, measures the decrease 

in plant growth due to the size and competitive effects
of the 

 

n

 

 interacting plants. The saturation term is equal
for all 

 

n

 

 plants at a given time. The saturation term

reduces as the plants grow and, when , the

saturation term equals zero and growth stops. The
saturation term is analogous to the competition term in

Fig. 1 The relationship between size and subsequent growth
(distribution modifying function (Westoby 1982) or G[t, x]
function (Hara 1984)) within a plant population for two
values of the asymmetry parameter (a). A curvilinear rela-
tionship with an increasing slope is considered evidence for
size-asymmetric competition, and the parameter a is a
measure of the degree of curvature.
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the logistic model of population growth of individuals
towards a carrying capacity.

We assume that the growth of individual plants is
proportional to a power function of their size (Schwinning
& Fox 1995; Damgaard 1999; Wyszomirski 

 

et al.

 

 1999)
and, following the terminology of Schwinning & Weiner
(1998), we define the power function as:

eqn 2

where the effect of plant size on growth is summarized
by the size-asymmetry parameter, 

 

a

 

, taking values
between 0 and 

 

∞

 

. If  

 

a

 

 = 0, all plants have the same
growth rate irrespective of  their size (complete sym-
metry). If  0 < 

 

a

 

 < 1, the growth rate is less than pro-
portional to the size of the plant (partial size symmetry).
If  

 

a

 

 = 1, the growth rate is proportional to the size of
the plant (perfect size symmetry; Fig. 1). If  

 

a

 

 > 1, the
growth rate is more than proportional to the size of the
plant (varying degrees of size asymmetry, as for 

 

a

 

 = 2 in
Fig. 1). If  

 

a

 

 = 

 

∞

 

, only the largest plants grow at all
(complete size asymmetry). In the special case of perfect
size symmetry (

 

a

 

 = 1) and logistic growth (

 

δ

 

 = 2) the
growth model (equation 1) reduces to Weiner & Thomas’s
(1986) model with all intraspecific competition coeffi-
cients set to one. The parameter 

 

a

 

 measures the degree
of curvature of the size–growth relationship among
individuals over the entire growth curve. If  the hypo-
thesis of  complete symmetry is not rejected (i.e. 

 

a

 

 is
not significantly different from zero), then modelling
growth as a function of size does not result in a significant
improvement over a simpler, mean field growth model.

 

    

 

In order to describe adequately the growth of a plant with
a dimensionless size less than one, the power function in
equation 2 was modified to the following expressions:

eqn 3

because this gives a monotonic increasing function of
both size and the parameter 

 

a

 

, for all 

 

v

 

i

 

(

 

t

 

) > 0, while
still passing through the origin (John & Draper 1980;
Damgaard 1999).

The individual plant biomass was estimated as height

 

×

 

 diameter

 

2

 

. Plants that died no longer contribute to
the population’s biomass (i.e. they no longer compete
with living plants).

The coupled differential equations (1) cannot be solved
analytically, and were therefore solved numerically
using the NDSolve routine of Mathematica (Wolfram
1999), after the equations had been reparameterized
(

 

θ

 

1

 

 = log(

 

κ

 

), 

 

θ

 

2

 

 = log(

 

a

 

), 

 

θ

 

3

 

 = log(

 

α

 

)) to ensure that all

parameters are strictly positive (parameter estimates
presented below have been back transformed). In order
to avoid auto-correlated errors, the model was fitted
to the growth increments in plant size. The residual
variance was homogenized with a Box-Cox transfor-
mation, which gave residuals that were approximately
normally distributed. The log-likelihood of a specific
parameter combination was calculated from the
transformed predicted sizes and transformed observed
sizes of all observed increments for all 

 

n

 

 plants.
The maximum likelihood estimates of the parameter

values, and the profile log-likelihood curve of  the
asymmetric competition parameter (

 

a

 

) and the shape
parameter (

 

δ

 

), were found using the FindMinimum
routine of Mathematica (Wolfram 1999). Using the
profile log-likelihood curves, the Bayesian posterior
probability distributions of the asymmetric competition
parameter and the shape parameter were calculated
assuming an uninformative prior distribution. Statistical
inferences were based on the 95% credibility intervals
(2.5% percentile to 97.5% percentile of the posterior
distribution) of  the parameters. Parameters were
concluded to be significantly different if  the 2.5%
percentile of the high parameter was higher than the
97.5% percentile of the lower parameter

 

Results

 

Our estimate of individual plant biomass, height 

 

×

 

diameter

 

2

 

, accounted for 98% of the variation in final
biomass. The numerical fitting method was successful
in fitting the growth model (equation 1) to the 

 

C. album

 

data (Table 1). A visual inspection of the data (Fig. 2)
clearly indicates that the plants have stopped growing
by the last measurement. As expected, the estimated
maximum size of plants (

 

α

 

) decreased at the higher
density (Table 1).

The use of the Richards growth model, which includes
the additional shape parameter (δ) improved the fit of
the model significantly (P < 0.001 for both densities;
likelihood ratio tests against the logistic growth model).
The shape of  the growth curve was different at the two
densities (Table 1), so that no simpler growth model with
a fixed shape parameter satisfactorily described the growth
curve over both densities. In both cases the hypothesis
of logistic growth (δ = 2) was rejected (Table 1).

The maximum likelihood estimate of the degree of
asymmetric competition (a) was significantly greater
than one at both densities and was significantly larger
at the higher density (Table 1).

Discussion

Increased density reduced both the maximum size that
plants could achieve, and the size at which plant growth
began to deviate from exponential.

Competition among Chenopodium album individuals
was always partially size-asymmetric. This seems to
be the most common form of competition among

f v t a v t
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a
a

i i
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 ( )   ( )
    

  
  
  

=
=
>
= ∞







1

1 0

0
0

large plants or small plants

f v t a v t
a
a
a

i i
a( ( ), )  ( ( )  )       

  
  
  

= + −
=
>
= ∞







1
1 1

0
0

1 (large plants) or 0 (small plants)

JEC_700.fm  Page 669  Saturday, July 27, 2002  10:49 AM



670
C. Damgaard, 
J. Weiner & 
H. Nagashima

© 2002 British 
Ecological Society, 
Journal of Ecology, 
90, 666–671

plants. Our data also provide support for the hypothe-
sis that the degree of size-asymmetry increases with
density. The advantage of being larger than other
plants increases as the density increases (Fig. 3), i.e. the
relationship between size and subsequent growth

(DMF or G [t, x] function; Fig. 1) becomes more
upwardly curved at higher densities.

Hara and Wyszomirski (1994) argued that including
a measure of the degree of asymmetry as a parameter in
a model cannot provide reliable empirical estimates of
the degree of asymmetry in real populations, because
models always improve in fit when an additional
parameter is added. Modern statistical methods, such
as the hierarchical models we use here, or Akaike’s
information criterion (Burnham & Anderson 1998)
allow us to compare models with different numbers of
parameters (e.g. models with and without an asymme-
try parameter). In contrast to Hara and Wyszomirski,
we argue that the inclusion of an asymmetry parameter
is an important step in the modelling of plant stand
development (Schwinning & Fox 1995).

Spatial models are becoming increasingly popular in
plant ecology (e.g. Weiner & Conte 1981; Pacala &
Deutschman 1995) and spatial models will be of
increasing importance in the coming years (Tilman &
Kareiva 1998). But in addition to the huge analytical
obstacles confronting spatial modellers (Dieckmann
et al. 2000), the collection of spatial data is itself extremely
demanding and often impossible. It is important to
develop alternative approaches, and to ask how far we
can go in modelling plant population development
without explicitly including space. We believe that the
methods presented here represent an important step in
this direction. It is possible that some of the effects
demonstrated here are a result of the spatial pattern,
but that must be considered an hypothesis at this point.
It is possible to extend the present model to include
spatial effects by including a term that describes the
decrease in the competitive effect of plants on their
neighbours with distance. The form of the distance
decay can be described by a parameter that can be
estimated, and alternative distance-decay models can
be compared (C. Damgaard, unpublished data).

New computer-intensive statistical methods enable
us to build and fit more biologically based models, i.e.
models in which the parameters have biological mean-
ing, and are therefore explanatory as well as predictive
(Loehle 1983; Weiner 1995b). Such models can be used
to explore the effects of different treatments on plant
growth and competition, as well as to test specific
hypotheses, as we have done here. In a classical statis-
tical analysis of plant growth data, we ask if  a treatment
has a statistically significant effect, and, if  so, how large

Table 1 Maximum likelihood estimates and 95% credibility intervals of the parameters in the individual-based Richards growth
model (equations 1 and 3) fitted to the Chenopodium album growth data. The biomass of plants was assumed to be proportional
to height (stem diameter2). Plants that died no longer contribute to the population’s biomass (i.e. they no longer compete with
living plants)

Plant density (plants m−2) κ a α δ 

400 0.0160 1.16 2460 0.80
(0.0104–0.0324) (1.07–1.22) (2200–2780) (0.72–0.95)

800 0.0046 1.31 1070 0.43
(0.0023–0.0062) (1.27–1.39) (1030–1110) (0.33–0.55)

Fig. 2 Growth in estimated biomass (height × diameter2,
arbitrary units, log scale) for the individual plants grown at
400 (a) and 800 (b) plants m−2.

Fig. 3 Fit Richards curves for plants of five initial sizes (0.50,
0.55, 0.60, 0.65, 0.70) at 400 (a) and 800 (b) plants m−2. A
linear scale is used to show the effects of density clearly.
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is its effect. This is sufficient for many scientific
questions, e.g. does a treatment increase growth? In
this classical ‘statistical’ approach the criteria for an
analysis are sensitivity and statistical power. As
scientific understanding develops further, one can begin
to build quantitative models that reflect underlying
biological processes. In this second approach, the
criteria have more to do with biological information
and explanation. One could liken the classical statistical
approach to plant population development to showing
that the acceleration of an object increases with the
force applied to it. The second approach is more like
testing the model that force equals mass times acceler-
ation. New methods allow us to combine these two
approaches, providing statistical tests for biologically
meaningful parameters, thus giving us increased pre-
dictive power, while also increasing our mechanistic
understanding of the biological processes involved.
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