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Abstract

Theories based on competition for resources predict a monotonic negative relationship

between population density and individual biomass in plant populations. They do not

consider the role of facilitative interactions, which are known to be important in high stress

environments. Using an individual-based �zone-of-influence� model, we investigated the

hypothesis that the balance between facilitative and competitive interactions determines

biomass–density relationships. We tested model predictions with a field experiment on the

clonal grass Elymus nutans in an alpine meadow. In the model, the relationship between

mean individual biomass and density shifted from monotonic to humped as abiotic stress

increased. The model results were supported by the field experiment, in which the greatest

individual and population biomass were found at intermediate densities in a high-stress

alpine habitat. Our results show that facilitation can affect biomass–density relationships.
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I N T R O D U C T I O N

The relationship between body size and density is central to

ecology ( Damuth 1981; Lawton 1989; Gaston & Blackburn

2000). One of the most basic relationships between the size

and density of individuals is density dependence within a

single species ( Watkinson 1980; Silvertown & Charlesworth

2001). When plant populations are grown at different

densities for a given period, total standing biomass initially

increases proportionally with density, levels off and then

remains constant at ever-higher densities, the so-called �Law

Of Constant Final Yield� ( Farazdaghi & Harris 1968; Drew

& Flewelling 1977). Resource competition is usually the

mechanism invoked to explain the negative relationship

between individual size and density: the amount of

resources in a fixed area is finite, so increasing the number

of individuals implies a reduction in their mean size

( Damuth 1981; Silvertown & Charlesworth 2001).

Recent research suggests that populations and communi-

ties living in environments characterized by a high degree of

abiotic stress may show different size–density relationships

( Deng et al. 2006). In such environments, the net effect of

neighbours on an individual is often facilitative (see Callaway

2007 and Brooker et al. 2008 for reviews). Facilitation occurs

when positive effects of neighbours, such as habitat amelio-

ration and nutrient enrichment, are stronger than resource

competition ( Holzapfel & Mahall 1999; Maestre et al. 2003).

The balance between facilitation and competition is strongly

influenced by the degree of abiotic stress experienced by the

interacting individuals ( Choler et al. 2001; Callaway et al.

2002; Maestre & Cortina 2004). The �stress gradient hypoth-

esis� predicts that: (i) facilitation and competition will vary
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inversely across gradients of abiotic stress, with facilitation

being the dominant interaction under highly stressful condi-

tions ( Bertness & Callaway 1994), while competition dom-

inates in lower stress environments, and (ii) under conditions

of high abiotic stress, facilitation increases with density more

than competition does ( Callaway & Walker 1997). Many, but

not all, field studies have supported these predictions (see

Callaway 2007 for a review), and there is a vigorous and

ongoing debate about the causes of the discrepancies found

among studies ( Maestre et al. 2005, 2006; Lortie & Callaway

2006; Callaway 2007).

To our knowledge, no previous study has explored how

the balance between facilitation and resource competition

affects biomass–density relationships in plant populations.

We do so by developing an individual-based, spatially

explicit �zone-of-influence� model of plant–plant interac-

tions to evaluate: (i) the potential effects of facilitation on

the relationship between the density and biomass in a plant

population, and (ii) the net outcome of intraspecific

interactions along density and stress gradients. Predictions

of the model were tested in a field experiment conducted in

an alpine meadow of the Tibetan Plateau, where plant

growth is strongly limited by low resource availability and

low temperatures ( Wang et al. 2008). We test two hypoth-

eses: (i) the biomass–density relationship is determined by

the balance between facilitation and resource competition,

and (ii) increasing neighbour density will increase the

strength of facilitation relative to competition under high

stress conditions.

M A T E R I A L S A N D M E T H O D S

Model

In a �zone-of-influence� model, each individual obtains

resources from a circular zone, and neighbouring individuals

occupy space and compete for resources in areas they

overlap ( Weiner et al. 2001; Weiner & Damgaard 2006). The

area occupied by a plant, A, represents the amount of

resources potentially available, and is related to its biomass,

B, as A ¼ cB2=3, where c is a constant. We set c = 1.0 in all

the simulations presented here; we simulated the model with

different c values, and obtained qualitatively similar patterns

(results not shown). An individual�s potential growth rate (in

absence of neighbours) through time (t), is defined by the

equation

dB

dt
¼ r A� B2

B
4=3
max

� �
¼ r cB2=3 � B2

B
4=3
max

� �
; ð1Þ

where Bmax is the maximum (asymptotic) plant mass, and r is

the initial (maximum) growth rate (in units of mass area)1

time)1).

Neighbouring plants compete for the resources in areas

they overlap. The effective area of a plant, Ac, is calculated

as the area it covers minus that part of the area lost to

neighbours, which is determined by the amount of overlap

and the degree of �size asymmetry� of competition ( Weiner

et al. 2001). Ac determines the realized growth rate of the

plant according to the equation:

dB

dt
¼ r Ac �

B2

B
4=3
max

� �
: ð2Þ

After Weiner et al. (2001), we used a discrete approximation

of continuous two-dimensional space, divided into a fine

grid, to obtain the overlapped area.

Equations 1 and 2 do not consider the effects of the

environment and facilitation on plant performance. To do

this, we assume that the individual growth rate is

negatively and linearly related to the degree of abiotic

stress ( Travis et al. 2006), and that interacting plants

benefit from the presence of neighbours under harsh

environmental conditions, presumably because of habitat

amelioration ( Callaway 2007). The effective area of a

plant with respect to positive interactions, Af, is calculated

as the sum of the areas shared with neighbours, so the

average Af of plants is positively related to population

density. For simplicity, we assume that the effect of

facilitation is additive ( Molofsky et al. 2001; Molofsky &

Bever 2002), i.e. its effects increase as the overlapping

area does. Therefore, both facilitation and resource

competition determine the realized growth rate of the

plant during the next time interval as follows:

dB

dt
¼ r Ac �

B2

B
4=3
max

� �
1� s

Af þ 1

� �
; ð3Þ

where s indicates the degree of abiotic stress (0 £ s < 1).

When s equals 0, eqns 2 and 3 are the same. The second

term on the right of eqn 3 represents the effects of abiotic

stress and facilitation on the realized growth rate (see

Appendix S1 in Supporting Information for the influence

of this term on the model behaviour). For simplicity in

analysing and interpreting the results, plants cannot have

negative growth rates, but continue to live and maintain the

maximum size they achieve ( Weiner et al. 2001; Weiner &

Damgaard 2006).

The size symmetry of competition is reflected in the rules

for dividing the overlapping areas among individuals. In our

simulations, we set a parameter, p, defined as the degree of

size-asymmetric competition due to resource uptake ( Sch-

winning & Weiner 1998; Weiner & Damgaard 2006). We

consider three theoretically important p-values reflecting

three modes of competition: complete size symmetry (the

overlapped areas are divided equally among all overlapping
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individuals, irrespective of their sizes; p = 0.0), perfect size

symmetry (the overlapping areas individuals are divided in

proportional the sizes of the overlapping individuals;

p = 1.0) and complete size asymmetry (the larger individual

obtains all the contested resources; p = ¥).

To facilitate the interpretation of the results, we assigned

conventional units to measures of mass and area that were

consistent with our field experiment (for Ac and Af, cm)2).

The simulations were stochastic: there was random normal

independent variation in initial size (B0 = 1 mg; SD = 0.1),

initial growth rate (r0 = 1 mg cm)2 t)1; SD = 0.1) and

asymptotic size (Bmax = 20000 mg; SD = 2000).

Our simulated populations were subjected to two different

gradients: density (plants m)2, from 4 to 9 on the natural

logarithm scale) and abiotic stress (0 £ s < 1). The density

gradients in the simulations encompassed the range of

densities employed in the field experiment (see below). In

addition to the exploration of the relationship between density

and mean individual biomass (�x), we evaluated how the effects

of neighbours at the population level changed through both

density and abiotic stress gradients. To do this, we estimated

the relative neighbour effect (RNE) as follows:

RNE ¼ �x1 � �x0

�xmax

; ð4Þ

where �x1 and �x0 are the mean individual biomass within the

population with and without interactions respectively, and

�xmax is the greatest of the two. RNE ranges from )1 to +1,

with negative and positive values indicating competition and

facilitation respectively. For estimating �x0, we calculated the

individual growth rate without interactions as follows:

dB

dt
¼ r A� B2

B
4=3
max

� �
ð1� sÞ: ð5Þ

We take a �wraparound� (torus) approach to avoid edge

effects ( Grimm & Railsback 2005). To test the effects of

initial spatial distribution of individuals, selected model runs

were repeated three times for both random and uniform

patterns. We present here the results for the random spatial

distributions; the results for the uniform distribution are

shown in the Supporting Information (Figs S1 and S2). All

simulations were performed in NetLogo ( Wilensky 1999).

Field experiment

To test the predictions of the model, we conducted an

experiment in an alpine meadow located in the eastern part

of the Qing-Hai Tibetan Plateau, China (33�58¢ N,

101�53¢ E; 3500 m a.s.l.; 5�slope). The average annual

temperature and precipitation are 1.2�C and 620 mm

respectively. The vegetation is dominated by sedges, most

notably Scirpus pumilus Vahl and Kobresia macrantha Boeck,

and by grasses such as Elymus nutans Griseb ( Wang et al.

2008). It is classified as alpine meadow soil ( Gong 1999).

Elymus nutans was chosen as the target species because its

high capacity for clonal growth should produce clear density

effects, it is a dominant species at the study site and previous

studies conducted there have found that it is strongly

facilitated by neighbours ( Wang et al. 2008). A total of 48

1 m · 1 m plots were randomly selected in a homogeneous

portion of the site in 2006, with a 50-cm walkway between

plots. Before sowing, we removed all the aboveground

vegetation and then turned the soil by hand. Roots within

the plots were also removed. Elymus nutans is cespitose.

Modules (culms) occur individually or in tufts, both of

which can be whole genets, or ramets connected by

rhizomes. We consider both individually occurring culms

and tufts as individual ramets ( Gorham 1979; Cheplick

1998; Scrosati 2000). The plots were seeded with a varying

number of E. nutans seeds to obtain 16 different ramet

densities ranging from 900 to 11 000 individuals m)2 (see

Table S1 in Supporting Information). Before sowing, a thin

layer of soil was sieved over the plots to provide a surface as

smooth as possible with minimal spatial heterogeneity. For

the random initial distribution, seeds were mixed with sand

and sown with a sieve. Each density level was replicated

three times. We also set up three control plots to obtain

populations without competition or facilitation. These plots

were seeded with 200 seeds each, and all neighbours within

a 10-cm diameter circle centred on each target seedling were

removed by hand. Target seedlings were chosen randomly in

each plot. While the objective was to obtain a density too

low for plant–plant interactions, individuals further away

than 10 cm might still have had some facilitative effects by

ameliorating wind speed, and plants may have competed

somewhat for below-ground resources, which may mises-

timate RNEs slightly.

To avoid edge effects, we set up a 30 cm · 30 cm

subplot within each plot for measurements. Periodic

inspection and hand weeding of non-target vegetation were

performed during the growing season. Plants were harvested

from the subplots in early September 2007, after a full

growing season but before the arrival of low temperatures,

which can result in negative growth. Individuals were

counted within each subplot, harvested and dried at 80 �C

until constant weight. Mean individual biomass was calcu-

lated as total biomass ⁄ ramet density. RNE values were

calculated according to eqn 4.

R E S U L T S

The degree of abiotic stress (s) strongly influenced the

relationships between individual density and mean individ-

ual biomass in the simulated populations, as the shape of the
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curves gradually shifted from linear to hump-shaped with

the increase of s ( Fig. 1). Total biomass was also highest at

intermediate densities (results not shown). In the field

experiment, the largest mean individual ( Fig. 2a) and total

( Fig. 2b) biomass were observed at intermediate densities.

The relationship between abiotic stress and the outcome

of intraspecific interactions, as measured with the RNE

index, was dependent on population density in the simulated

populations ( Fig. 3a). RNE index first increased and then

decreased with increasing stress at low densities (at 4.0 on

the ln scale). At high densities (such as at 8.0 on the ln scale),

intraspecific interactions changed from competition to

facilitation with increasing abiotic stress.

The relationship between density and the RNE index in

the simulations was dependent on the degree of abiotic

stress ( Fig. 3b). Under relatively benign conditions, the net

outcome of intraspecific interactions was negative, irrespec-

tive of the density considered. Under high abiotic stress

conditions, the relationship between density and the RNE

index was humped, indicating that competition was

prevalent at both extremes of the density gradient (this

hump-shaped pattern was more pronounced when individ-

uals were distributed in a uniform spatial pattern; see Fig. S2

in Supporting Information). These results were consistent

with those from the field experiment ( Fig. 4), where RNE

values shifted from negative to positive, and then to

negative again as ramet density increased. Facilitation was

dominant at intermediate densities.

The degree of size-asymmetric competition ( p) did not

significantly influence the simulation results, as the curves

observed under different p-values were qualitatively similar

( Figs 1 and 3). When s was 0 or 0.3, size distributions were

similar to those produced in other �zone-of-influence� model

studies and empirical studies on plant competition.
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Figure 1 Relationships between mean individual biomass and density in the simulated populations under different stress levels (0.0, 0.3, 0.6
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D I S C U S S I O N

Consistent with our first hypothesis, the biomass–density

relationship was strongly affected by facilitation in both the

simulations and the field experiment. Under the most

benign conditions, ln mean individual biomass was linearly

and negatively associated with ln population density, as in

numerous previous studies ( Damuth 1981; Silvertown &

Charlesworth 2001; White et al. 2007). As abiotic stress and

therefore facilitation increased, the relationship shifted from

linear to humped, suggesting that the benefits from habitat

amelioration because of aggregation of conspecifics offset

the negative effects of resource competition at low-

to-intermediate densities. These modelling results were

supported by the field experiment, where the greatest

biomass was found at intermediate densities.

Previous studies conducted in the same study area have

found that E. nutans is strongly facilitated by neighbours,

which increase soil water availability and temperature, and

provide protection from low air temperatures and strong

winds ( Wang et al. 2008; C.-J. Chu, unpublished data). It has

been suggested that in harsh environments, such as those

studied here, facilitation should occur only when positive

effects of neighbours, in terms of improved resources and

microclimate, are greater than negative effects because of

competition for resources ( Gómez-Aparicio et al. 2004;

Liancourt et al. 2005; Maestre et al. 2005). Our simulated and

experimental results provide support for this prediction, and

are consistent with observations from other communities in

which facilitation is important: seedling density and growth

were positively and negatively correlated at low and high

densities respectively in forest edges ( Dickie et al. 2005), and

the frequency of breeding barnacles in experimental and

natural populations was greatest at intermediate densities

( Leslie 2005).

Current controversies concerning size–density relation-

ships have focused on the slope of the log biomass–log

density relationship, but not its shape, which is assumed to

be negative and linear in all current models and theories

( Farrell-Gray & Gotelli 2005; White et al. 2007). Our results

from both the simulation and the field experiment challenge

this assumption, as they fit this general pattern only at high

densities. At low-to-moderate densities under conditions of

high abiotic stress, however, positive intraspecific interac-

tions modulated the shape of the biomass–density relation-

ship. Nor are our results consistent with the �Law of

Constant Final Yield� ( Farazdaghi & Harris 1968) because

total population biomass was highest at intermediate

densities ( Fig. 2b).

The relationship between RNE and abiotic stress in the

simulated populations was dependent on their density

( Fig. 3a). At relatively low densities, competition dominated

in both benign and harsh conditions, while facilitation was

significant only at intermediate abiotic stress levels. The

curve first increased and then decreased, presumably

reflecting the relative importance of facilitation and com-

petition along the stress gradient evaluated. While we

assume that facilitation increases with increasing abiotic

stress ( eqn 3), the net effect of positive and negative

interactions was also affected by density. At relatively low

densities, there were fewer neighbours around target

individuals, minimizing potential facilitative effects. Facili-

tation increased with an increase in abiotic stress, and the

net effect shifted from negative to positive, but high levels

of competition for limited resources under harsh conditions

offset and eventually overwhelmed facilitative effects

( Fig. 3a). This pattern is consistent with results obtained

with acorn barnacle populations ( Bertness 1989). At low

tidal heights, no barnacle recruits survived to reproduce at

any density because of intraspecific crowding, algal over-

growth and predation. Lower recruitment density decreased

intraspecific crowding, increased survivorship at intermedi-

ate tidal heights and decreased survivorship at high tidal

heights.
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Our second hypothesis, increasing neighbour density will

increase the strength of facilitation relative to competition

under high stress conditions, was not supported by our

simulated results. The net balance between costs and

benefits to living in low and high population densities is

driven at least partially by the degree of abiotic stress (s in

eqn 3; Bruno et al. 2003; Callaway & Walker 1997). Under

relatively benign conditions, negative interactions were

dominant throughout the density gradient, as found in

previous studies ( Stephens & Sutherland 1999; Hixon et al.
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stress increase in the direction pointed by the arrow. 60 time intervals were used in the simulations.
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2002; López & González 2003). As abiotic stress increased,

competition dominated at both extremes of the density

gradients, with facilitation being prevalent at intermediate

densities ( Fig. 3b). This pattern was consistent with our

experimental results ( Fig. 4) and with results on intertidal

barnacles, in which breeding was maximized at intermediate

densities ( Leslie 2005). The balance between facilitation and

resource competition is the most likely explanation for these

results. The probability of successful reproduction by the

barnacles increased with increasing barnacle density, but at

very high densities the effects of competition for space were

stronger than positive effects of conspecific aggregation.

Positive density dependence has also been observed at

high population densities under stressful conditions in other

studies ( Bruno et al. 2003). In a high rocky intertidal

environment in southern New England, the reproduction,

survivorship and growth of sessile invertebrates and

macroalgae were greater at higher than at intermediate

densities ( Bertness 1989; Bertness & Leonard 1997;

Bertness et al. 1999). It could be argued that the densities

in these marine environments were not high enough to

observe negative effects of competition. �High� and �low�
densities are relative terms that cannot often be directly

compared in different studies. High density in a particular

experimental study may not be very high in comparison with

what occurs in other areas or ecosystems.

The degree of size-asymmetric competition (p) did not

significantly influence our simulation results ( Figs 1 and 3).

Size-asymmetric competition usually has major effects on

size variation among individuals in a population, but its

effects on mean size are sometimes quite minor unless it

results in extensive density-dependent mortality ( Weiner

et al. 2001; Stoll et al. 2002). We could not compare size

distributions of our simulated and field studies, as we did

not determine individual biomass for each plant in the field,

and this is a focus of our ongoing research.

Our modelling and experimental results demonstrated

that facilitation can affect biomass–density relationships,

and that the net outcome of plant–plant interactions at the

population level is determined by both density and abiotic

stress. They also suggest that current theories aiming to

explain biomass–density relationships, such as simple

models of resource competition, may not hold in high

stress environments, where facilitation plays an important

role in intra- and interspecific interactions.

Despite the large and growing body of empirical evidence

showing the importance of facilitation for ecosystem

structure, functioning and dynamics in a wide variety of

environments ( Callaway 2007), researchers are only begin-

ning to incorporate it into mainstream ecological theory

( Bruno et al. 2003; Callaway 2007; Brooker et al. 2008; Gross

2008). Although our results need to be corroborated by

studies conducted in other strongly resource- or condition-

limited communities, they indicate that the consideration of

facilitation can substantially modify predictions from

resource-based theories, and provide an example of how

the explicit consideration of facilitation can help us build

more general theories of biomass–density relationships.
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