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Abstract

The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate

directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the

impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247

woody plant communities across global climate gradients, that temperature and precipitation have negligible direct

effects on NPP and only perhaps have indirect effects by constraining total stand biomass (Mtot) and stand age (a). The

authors of that study concluded that the length of the growing season (lgs) might have a minor influence on NPP, an

effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study’s

conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP.

We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches:

maximum-likelihood model selection, independent-effects analysis, and structural equation modeling. These new ana-

lyses showed that about half of the global variation in NPP could be explained by Mtot combined with climate variables

and supported strong and direct influences of climate independently of Mtot, both for NPP and for net biomass change

averaged across the known lifetime of the stands (ABC = average biomass change). We show that lgs is an important

climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (Tann and

Pann), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of

climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong,

direct role of climate in determining vegetation productivity at the global scale.
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Introduction

Understanding climate effects is critical to anticipate

the impacts of climate change on ecosystem processes,

such as carbon storage, which have feedbacks on the

climate system. According to current textbooks on

physiology and ecology, climate has strong, direct

impacts on net primary productivity (NPP) in ecosys-

tems worldwide (Begon et al., 2006; Chapin et al., 2012;

Taiz et al., 2015). Many studies have established empiri-

cal relationships between NPP and climate within and

across ecosystems (e.g., Leith, 1975; Schuur, 2003; Del

Grosso et al., 2008). There are well-established trends

for the increase of NPP across ecosystems with higher

temperature and precipitation from tundra to the tem-

perate zone and sometimes from the temperate zone to

the tropics (Huston & Wolverton, 2009; Chapin et al.,

2012; Gillman et al., 2015), and evidence for the influ-

ence of climate change on specific ecosystems is accu-

mulating weekly (e.g., Brienen et al., 2015). Most

approaches to examining relationships between NPP

and climate across ecosystems considered the total

effect of climate variables on NPP, that is, both direct

effects and those that are indirect, via differences in

stand structure. Thus, the direct effects of climate

include its influence on the physiological and environ-

mental determinants of plant growth, which are

directly regulated by temperature and water avail-

ability, including the kinetics of photosynthetic rates

and respiration rates and plant biomass allocation
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(Berry & Bj€orkman, 1980; Geider et al., 2001; Huxman

et al., 2004; Chapin et al., 2012; Long, 2012; Vila et al.,

2013; Coomes et al., 2014; Lichstein et al., 2014). Indirect

effects of climate on NPP include the influence of

climate on the structure of given ecosystems. For exam-

ple, NPP is strongly influenced by total stand biomass

(Mtot) (Keeling & Phillips, 2007; Pan et al., 2013), and

stands are often larger where rainfall is higher (Pregit-

zer & Euskirchen, 2004; Keeling & Phillips, 2007;

Coomes et al., 2014).

Resolving and disentangling the direct and indirect

effects of climate on NPP is clearly important, because

direct effects would signify more immediate responses

to ongoing climate change. However, a recent paper

(Michaletz et al., 2014) has challenged the consensus,

arguing, based on a statistical analysis of a global data-

set for woody plant-dominated communities, that cli-

mate has negligible direct influences on NPP at the

global scale. They explained this conclusion as the

result of plants’ convergence in productivity despite

global climate variation due to ‘selection to maximize

plant growth across climate gradients’. They hypothe-

sized that climate may have indirect effects, although

these were not presented or quantified.

Our examination of their statistical analysis revealed

serious flaws that resulted in erroneous conclusions.

We conducted new analyses of the same database, to

resolve and disentangle the effects of climate and stand

variables on NPP using three approaches – maximum-

likelihood model selection, independent-effects analy-

sis, and structural equation modeling – all of which

point to the opposite conclusion: there are direct and

very large effects of climate on world vegetation pro-

ductivity at a range of timescales. This debate is impor-

tant for analyses to resolve the influence of climate on

ecosystem processes.

Analyses of global NPP by Michaletz et al. and
their pitfalls

Michaletz et al. rejected a direct role for climate in

determining NPP based on four analyses, each of which

contained flaws (Table 1). To clarify the analyses, we

present a synthetic schema of the linkages among stand

variables, climatic variables, and ecological rates

(Fig. 1), based on standard understanding and defini-

tions of terms (Chapin et al., 2012; Malhi et al., 2015).

Climate variables may have direct effects on gross pri-

mary productivity (GPP) and/or on autotrophic (i.e.,

plant) respiration (Ra) and therefore on NPP, where

NPP = GPP�Ra. In addition, a higher stand biomass

(Mtot) will tend to increase GPP, Ra, and NPP, and

changes in stand age (a) might also influence NPP and

its components. Because climate variables can also set

constraints on Mtot, there may be indirect effects of

climate variables on NPP, via Mtot and (by association)

a. Subtracting from NPP the biomass losses due to plant

mortality followed by decomposition and heterotrophic

respiration (Rh) result in the net biomass change

(NBC = NPP�Rh), which in turn drives changes in

Mtot. The NBC is equivalent to, or translatable to the

‘net ecosystem production’ (NEP), the change of

organic matter or carbon mass in the ecosystem (Fer-

nandez-Martinez et al., 2014). The NBC is determined

fundamentally by NPP for stands that are increasing in

biomass, although in disturbed or declining stands,

NBC can be negative, when Rh exceeds NPP. The stand

age-averaged biomass change (ABC) is the average of

NBC over the entire known age of the stand, which can

also be determined as Mtot/a.

In their first analysis, Michaletz et al. tested the corre-

lations of NPP with its primary drivers in Fig. 1, that is,

with stand and climate variables. Michaletz et al. noted

the apparently strong correlation between NPP and

mean annual temperature (Tann) and mean annual pre-

cipitation (Pann) in their database – correlations similar

in strength to that between NPP and stand biomass

(Mtot; replotted in Fig. 2b–d; see Appendix S1). In our

analyses, NPP indeed correlated with all the climate

variables in the Michaletz et al. database, including also

the length of growing season (lgs), and growing season

temperature and precipitation (Tgs and Pgs, respec-

tively; Fig. 2a, and b and c insets). Michaletz et al.

argued that NPP was also strongly associated with

stand age (a), although they presented a different kind

of evidence for this: they plotted NPP vs. Mtot relation-

ships for four stand age classes. They found that

younger stands had higher NPP than older stands at a

given Mtot (replotted in our Fig. 2d), which they attrib-

uted to stand age-related decline in NPP at the global

scale. However, this conclusion arose from a spurious

graphical analysis (see Appendix S2). When we applied

the same test for correlation of NPP with a that Micha-

letz et al. performed for the other variables (Fig. 2a–c),
we found a very weak negative relationship of NPP to a

(R2 = 0.05; P < 0.001; Fig. 3a). Indeed, NPP was statisti-

cally independent of a for stands > 35 years (R2 = 0.004;

P = 0.08; n = 972) or > 50 years (R2 = 0.002; P = 0.28;

n = 676; Fig. 3b), which is when pronounced declines

in growth occur in most natural woody ecosystems

(Gower et al., 1996; Weiner & Thomas, 2001; Pregitzer

& Euskirchen, 2004; He et al., 2012). Stand age-related

growth reductions are ecosystem specific, and the sam-

pling by Michaletz et al. of ecosystems of different ages

in the database could not resolve this. Our analyses

suggest that the apparently higher NPP of stands

< 50 years in this database was instead explained by a

sampling bias, as these young stands were sampled in

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 12–24
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moister, warmer climates with 1–2 month longer grow-

ing seasons on average than the older stands (Ap-

pendix S2). Thus, while both climate and Mtot were

strong predictors of NPP, a strong influence of a

on NPP at the global scale was not supported by

our analysis.

Fig. 1 Synthetic schematic of the linkages among climatic variables, stand variables, and production and loss rates (in red, brown,

green, black, and blue, respectively). Climate variables may have direct effects on gross primary productivity (GPP) and/or autotrophic

respiration (Ra) and therefore net primary productivity (NPP). In addition, a higher stand biomass (Mtot) will tend to increase GPP, Ra,

and NPP and changes in stand age (a) might also influence NPP and its components. Because climate variables can also set constraints

on Mtot, there also may be indirect effects of climate on NPP, via Mtot and (by association) a. Subtracting from NPP the biomass losses

due to heterotrophic respiration (Rh) gives in the net biomass change in the system (NBC), which in turn drives changes in Mtot. (We

note that the mortality of trees, followed by their decomposition, is accounted for in Rh). The stand age-averaged biomass change

(ABC) is the average of NBC over the known age of the stand developed from bare ground and can also be calculated as Mtot/a. One

important implication is that if Mtot and a are used in combination to predict NPP, as done by Michaletz et al., a circularity arises,

because ABC = Mtot/a, and thus, one is predicting NPP not from primary drivers, but from ABC, which is downstream variable mech-

anistically driven by (and statistically associated with) NPP. Such an analysis loses resolution to detect climate influences on NPP. Note

that this formulation focuses on the processes determining NPP within a given ecosystem; variation among ecosystems in NPP (i.e., in

a global analysis) should be driven by the same factors, although other sources of variation play a key role, for example, differences in

the pool of species and their traits. Additionally, climate,Mtot and a may also have potential influences on Rh (not shown). Our analyses

disentangled the direct vs. indirect effects of climate on NPP and showed substantial direct as well as indirect effects of climate on

NPP.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 12–24
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Second, Michaletz et al. argued that the correlations

of NPP with climate variables should be discounted,

based on a novel interpretation of lgs. They calculated

the variable NPP/lgs as a ‘more instantaneous’ version

of NPP and found only weak relationships of NPP/lgs
with growing season temperature (Tgs) and precipita-

tion (Pgs; R
2 = 0.026 and 0.017, respectively; P ≤ 0.001),

and concluded from this analysis that there is a negligi-

ble direct effect of climate on NPP. They further argued

that the strong correlation of NPP with Tann found in

their first analysis (Fig. 2b), and in previous studies,

was spurious, arising only as an artifact of the correla-

tion of Tann with lgs. Michaletz et al. thus considered the

influence of lgs not to be a direct climatic effect and

Fig. 2 Correlations of net primary productivity (NPP) and stand age-averaged biomass change (ABC = Mtot divided by stand age, a)

with climate variables and stand biomass (Mtot), from the global database compiled by Michaletz et al. (2014). Main panels B, C, and D

are replotted from Michaletz et al. (2014), and additional plots represent our novel analyses. Notably, ABC is highly correlated with

NPP (Fig. 4) and shows the same correlations with climate variables. Climate variables are (a) and (e) length of growing season (lgs;

R2 = 0.31 and 0.28, respectively; P < 0.001; (b) and (f) mean annual temperature (Tann; R
2 = 0.30 and 0.24, respectively; P < 0.001) and

inset with gray symbols, growing season mean temperature (Tgs; R
2 = 0.12; P < 0.001); (c) and (g) mean annual precipitation (Pann;

R2 = 0.28 and 0.22, respectively; P < 0.001) and inset with gray symbols, growing season mean precipitation (Pgs; R
2 = 0.29; P < 0.001);

and (d) Mtot (power law fitted; R2 = 0.31; P < 0.001); black, blue, orange, and gray points represent, respectively, stands 0–50, 51–100,

101–200, and ≥201 years old. Lines are fitted by least squares regression; for all relationships but those with Mtot, the correlations were

stronger with untransformed than log-transformed data, but remained significant in either form.

Fig. 3 Plots of net primary productivity (NPP) against stand age from the global database compiled by Michaletz et al. (2014), for (a)

all 1247 woody dominated ecosystems in the database (R2 = 0.05; power law fitted, given its higher correlation than linear; P < 0.001)

and (b) for stands >50 years of age. R2 = 0.002; P = 0.28; n = 676).

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 12–24
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featured this conclusion in their Abstract. In our view,

this is a misclassification of lgs, and by controlling out

the effect of lgs on NPP, Michaletz et al. removed much

of the influence of climate on NPP before testing its cor-

relations with other climate variables. A clear under-

standing of lgs as a primary climate variable is essential,

because it is an important driver not only of NPP, as

shown in many previous studies, and as we found for

the Michaletz et al. database (Fig. 1a), but it is also a

major determinant of the geographical distribution of

biomes (Walter, 1985; Chapin et al., 2012). Indeed, lgs
can be considered as a climate variable by its calcula-

tion and also geophysically, mathematically, and bio-

logically. lgs was calculated from climate data (as the

number of months with mean minimum temperature

greater than 0.6 °C and a moisture index > 0.08, consid-

ered as thresholds of air temperature and precipitation

for woody plant growth). Geophysically, lgs and Tgs are

intrinsically correlated across locations globally, shift-

ing downward with latitude and altitude and increas-

ing with continentality. The same is true of lgs and Pgs

but to a lesser extent given that the intrinsic correlations

of Pgs with latitude, altitude, and continentality are to

some extent decoupled by winds and ocean currents

that influence rainfall independently of latitude and

altitude. Mathematically, lgs is a fundamental climatic

component of Tann and Pann:

Tann ¼ lgs � Tgs þ ð1� lgsÞ � Tngs ð1Þ

Pann ¼ lgs � Pgs þ ð1� lgsÞ � Pngs ð2Þ
where in this formulation, lgs is expressed as a fraction

of the 12 months of the year, and Tngs and Pngs the tem-

perature and precipitation, respectively, of the non-

growing season. Simplifying further,

Tann ¼ lgsðTgs � TngsÞ þ Tngs ð1aÞ

Pann ¼ lgsðPgs � PngsÞ þ Pngs ð2aÞ
Thus, lgs is a component of Tann and Pann and,

because it is also an intrinsic geophysical correlate of

their other components, Tgs and Pgs, with which it is

multiplied, the effects of lgs on Tann and Pann are quanti-

tatively very strong. All terms in these equations,

including lgs, are biological climatic drivers too, being

determinants of the amount of energy available annu-

ally to the ecosystem for metabolism. Indeed, lgs is

defined as an interface of biology with climate: the win-

dow of time that permits plant growth. lgs represents a

tighter constraint with much less wiggle room for

plants to compensate by adaptation or acclimation than

Tgs or Pgs. While species can acclimate or adapt to some

extent to mitigate against lower Tgs or Pgs, producing

species variation in responses to Tgs or Pgs, a community

cannot mitigate a shorter lgs as readily, given its defini-

tion as the days above the minimum threshold for all

plant growth. A shorter lgs will certainly narrow the

growing window for most or all species. For all these

reasons, lgs captures more of the influence of climate on

NPP than the other factors in Eqns (1) and (2), in the

database of Michaletz et al., and in previous studies of

drivers of NPP and the limits of biome distributions

globally (Begon et al., 2006; Chapin et al., 2012). Conse-

quently, in our view, the weak correlation of NPP/lgs
with Tgs or Pgs does not imply that the correlation of

NPP with Tann or with Pann was spurious, as Michaletz

et al. argued. Controlling for lgs before testing the rela-

tionship of NPP to other climate variables removed a

major climate variable which was a correlate of the

other climate variables and thus does not test the influ-

ence of climate ‘more directly’. Rather, the strong rela-

tionships between NPP and lgs, Tgs, Tann, Pgs, and Pann

all imply a strong influence of climate on NPP.

For their third and fourth analyses, Michaletz et al.

introduced a multiplicative model, which they derived

from metabolic scaling theory, with which, they

argued, NPP can be strongly predicted without the

need for any climate variables. They described NPP as

a multiplicative function of the variables at the top of

Fig. 1, that is, Mtot and a, precipitation (Pann or Pgs),

temperature (Tann or Tgs) and lgs, and constants and fit-

ted parameters (eqn 3 of Michaletz et al., 2014, here

referred to as Eqn M3):

ln NPPð Þ ¼ alnðMtotÞ þ aa ln að Þ � E

kT
þ aP ln Pð Þ

þ algs ln lgs
� �þ b0;1 ðM3Þ

Michaletz et al. found this model had a high R2 of

0.77, which they attributed to the strong explanatory

power of Mtot and a, and a negligible influence of cli-

mate. However, we found that the high R2 of Eqn (M3)

arose due to a hidden circularity from the use of both

Mtot and a as multiplicative predictors. Equation (M3)

can be rewritten as:

ln NPPð Þ ¼ �aa ln ABCð Þ þ ðaþ aaÞ ln Mtotð Þ � E

kT
þ aP ln Pð Þ þ algs ln lgs

� �þ b0;1

ðM3aÞ
(see Appendix S3). Thus, Eqn (M3) effectively uses the

stand age-averaged biomass change (ABC) as a predic-

tor variable, because ABC = Mtot/a (Fig. 1). Yet, ABC is

mechanistically determined by NPP and statistically

correlated with NPP (Figs 1 and 4; R2 = 0.71; P < 0.001;

see Appendix S4). Thus, Eqn (M3) predicts NPP from

ABC which is its intrinsic correlate (note that the fitted

parameter aa takes a negative value, so the relationship

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 12–24
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of predicted NPP to ABC is positive). Indeed, of all fac-

tors in Eqn (M3a), ABC is the strongest driver – the R2

value was 0.71 for predicting NPP from ABC, close to

that for the full model. Further, we found that ABC was

itself strongly correlated with climate variables

(Fig. 2e–g), supporting climate effects not only on NPP,

but also on biomass accumulation averaged across the

known lifetime of stands worldwide.

In our view, the inclusion of the a term in Eqn (M3)

led to the flawed analysis of Michaletz et al., because

Mtot and a together led to inserting ABC, a variable that

is logically downstream of NPP, mechanistically deter-

mined by NPP, and correlated with NPP (Figs 1 and 4)

into the predictive model for NPP, although a actually

had no added value as a predictor (Appendices S2 and

S3). Although Michaletz et al. intended the inclusion of

a in the model to account for age-related NPP decline in

older stands, such a role for a was not supported in the

database (Fig. 3a, b). Further, age-related declines in

NPP represent a stand-specific trajectory, highly vari-

able among species within and across ecosystems

(Gower et al., 1996; Weiner & Thomas, 2001; Pregitzer

& Euskirchen, 2004; He et al., 2012). The multiplicative

a term in Eqn (M3) with its single exponent fitted

across all ecosystems instead represents a ‘general’ age-

related decline for all ecosystems, which was redun-

dant, being already modeled in Eqn (M3) as a, the fitted
coefficient for Mtot; a smaller a reflects a greater age-re-

lated decline across all ecosystems.

Michaletz et al. next argued that climate variables

were not important because they found that a simpler

model without climate variables, ln NPPð Þ ¼ aln Mtotð Þþ
aa ln að Þ þ b0;1, had nearly the same R2 value as the full

model. They named this version, without climate vari-

ables as a ‘general scaling function’ to predict NPP

worldwide as a multiplicative power law function of

Mtot and a, given their conclusion that only these two

variables mattered (their Fig. 3). However, rather than

establishing that Mtot and a are primary drivers of NPP,

this function simply predicts NPP from ABC, that is,

from Mtot/a, which is circular given that ABC is intrin-

sically correlated with, and mechanistically down-

stream of NPP (Figs 1 and 4). Additionally, Michaletz

et al. stated that this simpler version without climate

variables was selected with greater likelihood in a

model comparison over Eqn (M3), which included cli-

mate variables; they reported AIC values of �1768 vs.

140. Such a strong discrepancy in AIC values suggests

an error, and indeed, we were unable to replicate this

result with their data. In our analyses of the database

using maximum-likelihood model comparisons, mod-

els including climate variables were always better sup-

ported, with lower AIC values, than models with Mtot

and a alone (see section, “Rigorous approaches to test-

ing the direct and indirect influences of climate on

NPP”). Michaletz et al. also conducted a partial correla-

tion analysis considering the relationship of NPP to

each variable in eqn M3 while controlling for all of the

others and found that NPP was closely related only to

Mtot and a, and weakly related to all individual climate

variables (including lgs) when all the other variables

were controlled. From this analysis, they concluded

that ‘age and biomass together explained most of the

variation in NPP’. That was a counterintuitive conclu-

sion, because NPP was correlated as strongly with cli-

mate variables as with Mtot and much more strongly

than with a (Fig. 2a–d). Indeed, the partial correlation

analysis conducted by Michaletz et al. was inappropri-

ate for resolving the influence of climate variables. As

Murray & Conner (2009) pointed out, ‘partial correla-

tions are not designed to partition the variance shared

between multiple correlated predictors and the depen-

dent variables’. More specifically, in this global data-

base, the climate variables Tann, Tgs, Pann, Pgs, and lgs
were positively intercorrelated (R2 = 0.073–0.90;
P < 0.001), so partialing out any one or more climate

variables cancels the influence of others and removes

the ability to resolve their influence in a partial correla-

tion analysis (Zar, 1999). Additionally, partialing out

both Mtot and a together removes much of the variation

because the two define ABC, an intrinsic correlate of

NPP (Fig. 4), which is also correlated with the climate

variables (Fig. 2e–g). Finally, the apparent importance

of a in this partial correlation analysis also arose from

that circularity – when controlling out Mtot, a becomes

an important predictor of NPP due to a statistical arti-

fact (see Appendix S2). Such a partial correlation analy-

sis does not permit the inference of direct vs. indirect

drivers of NPP. Independent-effects analysis is an

appropriate approach and leads to the opposite conclu-

sion, that is, of strong direct influence of climate on

Fig. 4 Correlation of net primary productivity (NPP) with

stand age-averaged biomass change (ABC = Mtot divided by

stand age, a) for the database of 1247 woody plant-dominated

ecosystems compiled by Michaletz et al. (2014). R2 = 0.71 for

power law fit; P < 0.001.
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NPP (see section “Rigorous approaches to testing the

direct and indirect influences of climate on NPP”).

Finally, Michaletz et al. developed a similar model to

predict NPP/lgs (their eqn 4, here referred to as Eqn M4)

ln NPP=lgs
� � ¼ aln Mtotð Þ þ aa ln að Þ � E

kTgs
þ aP ln Pgs

� �

þ b0;2
ðM4Þ

and applied this model in the same way as for

Eqn (M3), finding an R2 of 0.44, and that in a partial

correlation analysis, Mtot and a were the best predictors,

with a small additional influence of Tgs or Pgs. This

analysis combined the errors described above: remov-

ing the influence of climate by dividing NPP by lgs, an

important climate variable that is correlated with the

others; including the circular term ABC, arising from

including both Mtot and a; and inappropriate use of

partial correlation analysis to partition variance among

correlated factors.

Michaletz et al. concluded from their analyses that cli-

mate had a negligible direct influence onNPP. They pro-

posed that climate might perhaps indirectly influence

NPP through Mtot and a (Fig. 1) although they did not

test that hypothesis. In fact, our analyses showed that in

their database, Mtot correlated very weakly with Tann,

Tgs, Pann, or Pgs (R2 = 0.014, 0.020, 0.10, 0.048, respec-

tively; P < 0.001) as did a (R2 = �0.10, 0.12, 0.00017,

0.012; P < 0.001 for all but Pann, P = 0.66). The inability

of Michaletz et al. to resolve the direct influence of cli-

mate onNPP arose from the flaws of their analyses.

Rigorous approaches to testing the direct and

indirect influences of climate on NPP

Michaletz et al. made a useful contribution by compil-

ing a valuable database and explicitly attempting to

resolve the variables that influence NPP. However, the

Michaletz et al. analyses were subject to the flaws

described above (summarized in Table 1), and their

multiple regression and partial correlation analyses

were not appropriate to test the relative importance of

direct and indirect effects of climate on NPP. Three

powerful approaches applicable to such a question –
although not previously used, to our knowledge, to

analyze the drivers of NPP – are maximum-likelihood

model selection (MLMS; Hilborn & Mangel, 1997; Burn-

ham & Anderson, 2002), independent-effects analysis

(IEA; Murray & Conner, 2009), and structural equation

modeling (SEM; Grace, 2006; Grace et al., 2012). When

we applied these approaches to the compiled dataset of

Michaletz et al., each provided special insights and they

all converged in supporting climate as a direct driver of

NPP across ecosystems globally (Table 2).

We applied MLMS to the Michaletz et al. dataset

comparing Eqns (M3) and (M4) with more parsimo-

nious models based on removing climate variables (see

Appendix Table S1). In the analysis of Eqn (M3), six of

seven tested models that included climate variables

were selected over the model based on Mtot and a with-

out climate variables (DAICc = 3.6–79; note that a

DAICc of ≥2 is a basis for rejecting models). This finding

was supported whether annual or seasonal means were

used for temperature or precipitation (Appendix

Table S1). According to these models, global variation

in lgs, Tann, and Pann drove variation in NPP by 60%,

51%, and 30%, respectively (Appendix Table S1). The

models with a removed, to eliminate the hidden circu-

larity of including ABC as an input, also showed far

greater support when including climate variables

(DAICc = 65–414; Table S1). According to these models,

global variation in lgs, Tann, and Pann drove NPP to vary

by 4.2-fold, 3.6-fold, and 2.1-fold, respectively (Fig. 5a–
c). When testing models for NPP normalized by lgs,

thus already removing much of the influence of climate,

models with climate variables included were still

selected with greater likelihood than models with Mtot

and a alone (Table S1). This analysis demonstrates that

climate variables lgs, temperature, and precipitation

have strong, quantitatively important influences on

NPP independently of Mtot and a.

Second, we used independent-effects analysis based

on Eqn (M3) to analyze the dataset. We found that cli-

mate variables had strong effects on NPP indepen-

dently of Mtot and a, with climate variables amounting

to 25–28% of all the variables’ influence on NPP,

whether climate variables were considered as annual or

growing season means (Fig. 6a; Appendix Table S1).

Further, when testing the model based on Eqn (M3) but

removing the a term, to avoid the hidden circular term

ABC, the climate variables accounted for 45–50% of all

of the variables’ influence on NPP, similar to the 50–
55% explained by Mtot (Fig. 6b). The lack of importance

of a was confirmed by a test of the model based on

Eqn (M3) but without the Mtot term, which showed that

a alone had only a small effect on NPP, that is, 7–8% of

all the variables’ influence (Fig. 6c). When testing

Eqn (M4), in which NPP was controlled by lgs, the

influence of temperature and precipitation was much

reduced, consistent with the fact that lgs represents a

major component of Tann and Pann and its being an

intrinsic geophysical correlate of Tgs and Pgs (Eqns 1a

and 2a) – yet the remaining climate variables explained

7–18% of all the variables’ influence, or, testing the

model based on Eqn (M4) but not including a, 6–16% of

all the variables’ influence. All these analyses indicate a

strong, direct influence of climate on NPP, indepen-

dently of Mtot and a.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 12–24
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Third, we conducted structural equation modeling

(SEM) to explicitly test for the direct and indirect

dependence of NPP on climatic variables. Model A

represents the hypothesis of Michaletz et al., in which

climate variables could have direct influence on NPP

or could influence NPP indirectly via Mtot and a

(Fig. 7a; Table S2). In model B, we removed the a

term to avoid the hidden circularity (Fig. 7b). Model

C was the same as model B, but with additional cau-

sal relationships representing the influence of lgs on

Tann and Pann, consistent with Eqns (1a) and (2a)

(Fig. 7c). We found that model A was not supported

(Table S2), probably due to its hidden circularity.

Models B and C were highly supported and model B

using growth season climate variables had the lowest

AIC. In all the models, the total effect of climate was

approximately equal to or stronger than that of Mtot

(each contributing about 50% of the determination of

NPP), and the direct effects of climate on NPP were

approximately equal to or stronger than indirect

effects (47–94% of the total effect of climate was

direct; Table S2).

Fig. 5 Sensitivity analysis showing the strong influence of cli-

mate variables on net annual productivity (NPP) based on mod-

els including individual climate variables and stand biomass

(Mtot), parameterized by maximum likelihood for the global

database compiled by Michaletz et al. (2014). For each model,

the effects on NPP are shown of increasing individual variables

from the minimum value in the database to the maximum, with

the other variable at its mean value in the database. (a) model

predicting NPP from the length of the growing season and Mtot

(ln NPPð Þ ¼ aln Mtotð Þ þ algs ln lgs
� �þ b0;1; R2 = 0.50; P < 0.001);

(b) from mean annual temperature (Tann) and Mtot

(ln NPPð Þ ¼ aln Mtotð Þ � ðE=kTannÞ þ b0;1; R2 = 0.50; P < 0.001);

and (c) from mean annual precipitation (Pann) and Mtot

(ln NPPð Þ ¼ aln Mtotð Þ þ aP ln Pð Þ þ b0;1; R
2 = 0.35; P < 0.001).

Fig. 6 Results of independent-effects analysis applied to the

models for net annual productivity with climate variables, stand

biomass (Mtot), and stand age (a) from the global database com-

piled by Michaletz et al. (2014): (a) full Eqn (M3) model, includ-

ing Mtot, a, the length of growing season (lgs), mean annual

temperature (Tann), and mean annual precipitation (Pann)

(ln NPPð Þ ¼ aln Mtotð Þ þ aa ln að Þ � ðE=kTÞ þ aP ln Pð Þ þ algs ln lgs
� �þ

b0;1; R
2 = 0.74; P < 0.001); (b) model including Mtot, lgs, Tann, and

Pann (ln NPPð Þ ¼ aln Mtotð Þ � ðE=kTÞ þ aP ln Pð Þ þ algs ln lgs
� �þ b0;1;

R2 = 0.51; P < 0.001); and (c) model including a, lgs, Tann, and Pann
(ln NPPð Þ ¼ aa ln að Þ � ðE=kTÞ þ aP ln Pð Þ þ algs ln lgs

� �þ b0;1; R2 =

0.26; P < 0.001). Similar results were found using growing season

mean temperature and precipitation (Table S1).
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Thus, rather than finding negligible direct effects of

climate variables on NPP, all three of our analyses con-

verged in the same result, opposite to that of Michaletz

et al. (2014). We found strong, direct climatic effects,

equal to or stronger than indirect effects of climate on

NPP via Mtot or a. We found that lgs is the strongest cli-

matic driver of NPP with additional, important, and

independent explanatory power of temperature and

precipitation, whether averaged annually or for the

growing season. All these analyses highlighted the cru-

cial and direct role of climate in determining NPP, con-

sistent with mechanistic principles, and underlining the

need to address the influence of climate change impacts

on global vegetation.

Avoiding pitfalls and improving resolution in

future studies of the drivers of NPP

We agree with Michaletz et al. that novel analyses are

needed to clarify NPP and its drivers and to improve

predictive power. However, we disagree with the over-

all conclusion of Michaletz et al. that climate has a neg-

ligible direct impact on NPP. We found that strong

direct effects of climate on NPP can be resolved at the

global scale using rigorous approaches such as MLMS,

IEA, and SEM. Our analyses are especially novel in

demonstrating that combining stand structure and cli-

mate data enables a prediction of NPP across ecosys-

tems (R2 of approximately 0.50), with climate variables

and Mtot contributing strongly to this predictive power.

Michaletz et al. proposed several explanations for

why climate should not directly influence NPP at the

global scale. First, they suggested that the influence of

climate may be indirect via stand variables, because

NPP would increase with Mtot and decline with a, and

these stand variables might in turn be constrained by

climate, although our analyses showed that direct

effects were equal to or outweighed such indirect

effects. Second, they posited that plants should be

selected globally for rapid growth and that biochemical

adaptation and/or acclimatization to cold temperatures

may offset temperature effects, resulting in a dampened

relationship of NPP to temperature. We argue that local

adaptation and plasticity cannot completely overcome

the effects of global climate variation on growth, and

Fig. 7 Structural equation models (SEM) for net annual

productivity (NPP) as determined by climate variables, stand

biomass (Mtot), and stand age (a) applied to the 1247 ecosystems

worldwide in the dataset of Michaletz et al., 2014; climate vari-

ables include length of growing season (lgs), and mean annual

or mean growing season temperature and precipitation (Tann,

Tgs, Pann, and Pgs, respectively). Model A was based on the

hypothesis of Michaletz et al. that climate variables would have

direct effects on NPP or indirect effects via Mtot and stand age

(a) and that model was not supported, likely due to the circular-

ity of including Mtot and a (and therefore ABC) as predictors of

NPP. Model B was the same model without including the a

term, and model C had additional influence of lgs on T and P (as

explained in the text). Each model was tested using annual or

mean temperature and precipitation (shown here), or growing

season means (Tgs and Pgs rather than Tann and Pann). The best

supported model by AIC was model B using growing season

mean climate variables (Table S2 for direct and indirect effects

of each factor). To obtain the standardized path coefficients, z-

transformation was used to adjust the means of variables to zero

and their variances to 1.0. Directional arrows linking two vari-

ables depict direct effects (all significant at P < 0.05). The thick-

ness of the solid arrows reflects the magnitude of the

standardized SEM coefficients, which are listed beside each

path.
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sometimes they can reinforce the effects of climate, as

shown by studies of field and common garden plants in

which growth-related traits are equally or more

strongly related to climate of origin in the field than

when grown in a common garden, and studies showing

that cold temperatures limit growth in many terrestrial

ecosystems (Clausen et al., 1940; Cordell et al., 1998;

Reich & Oleksyn, 2008). Because they did not see an

effect of temperature, Michaletz et al. also argued that

‘future studies move away from using mean annual

temperature and instead use air and plant body tem-

peratures measured during the growing season and/or

key periods of development’. This is bad advice; it is

well known that leaf temperatures correlate closely

with air temperature over hourly and daily timescales

(Jones, 2014). Finally, Michaletz et al. questioned the

appropriateness of their own climate data, interpolated

from climate models using 29-year means. We agree

that such data are imprecise. Yet, our analyses were

able to identify strong direct influences of climate on

NPP and ABC.

The first rule of statistical inference that students

learn is that correlation does not necessarily imply cau-

sation. It therefore follows that the strength of a correla-

tion does not necessarily imply the strength of a causal

relationship. If we can do experiments, we can disen-

tangle causal networks with strong inferences. When

we have only descriptive data, we have to make

assumptions before we can make inferences about cau-

sal factors, and any conclusions we reach are highly

dependent on those assumptions. Michaletz et al. made

several assumptions about what are and are not climate

variables and about causal chains, assumptions that did

not withstand critical analysis. They used input vari-

ables that already include the effects of climate (i.e.,

ABC = Mtot/a) and removed climate from a predicted

variable before testing (i.e., NPP/lgs). Therefore, adding

climatic variables in these analyses did not provide

additional predictive power. Statistical approaches

such as MLMS, IEA, and SEM not only help us to get

the strongest inferences from data, but also force us to

be clear and ‘up front’ about the assumptions we are

making, so that these can be scrutinized and open to

criticism.

There is actually a great deal of experimental evi-

dence for the direct role of climate in determining NPP.

If we irrigate a dryland, NPP increases enormously. If

we warm arctic tundra, NPP increases significantly

(Natali et al. 2012). These are obvious direct effects, and

many strange assumptions would be necessary to inter-

pret these as indirect effects.

This debate highlights the extent to which our

understanding of climate impacts on ecosystems

worldwide has been fragmentary. Our work focused

mainly on approaches to testing the direct influence of

climate on NPP given the database compiled by

Michaletz et al. However, further improvements are

needed both in the quality and the representativeness

of the dataset for NPP (see Appendix S5). Local cli-

mate data are scarce for many ecosystems of the

world, a situation currently being ameliorated (Ander-

son-Teixeira et al., 2014; Schimel & Keller, 2015; Stern-

berg & Yakir, 2015). As data become available,

analyses will require close scrutiny if we are to tease

apart the direct and indirect influences of climate on

NPP and other aspects of ecosystem structure and

function. In the models we tested that predicted NPP

from climate and Mtot, excluding a to avoid circularity,

the R2 values were approximately 0.50. We need to

include other factors beyond climate and stand bio-

mass for the prediction of NPP, including soil fertility

(Fernandez-Martinez et al., 2014), composition and

diversity of communities (Dijkstra et al., 2011; Gillman

et al., 2015), species interactions (Adler et al., 2012),

and disturbance (Chave et al., 2001). Analyses with

improved sampling, avoiding the described pitfalls,

and implementing a range of high-resolution statistical

approaches will result in greatly improved predictive

models relating ecosystem functioning to climate (and

other factors), in turn leading to more accurate projec-

tions for given ecosystems, and reliable information

for next-generation dynamic global vegetation models

(Prentice et al., 2015), which will best inform policies to

enhance the preservation of ecosystems and the miti-

gation of ongoing climate change.
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