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Abstract

The need for rigorous analyses of climate impacts has never been more crucial. Current textbooks state that climate
directly influences ecosystem annual net primary productivity (NPP), emphasizing the urgent need to monitor the
impacts of climate change. A recent paper challenged this consensus, arguing, based on an analysis of NPP for 1247
woody plant communities across global climate gradients, that temperature and precipitation have negligible direct
effects on NPP and only perhaps have indirect effects by constraining total stand biomass (M) and stand age (a). The
authors of that study concluded that the length of the growing season (/;s) might have a minor influence on NPP, an
effect they considered not to be directly related to climate. In this article, we describe flaws that affected that study’s
conclusions and present novel analyses to disentangle the effects of stand variables and climate in determining NPP.
We re-analyzed the same database to partition the direct and indirect effects of climate on NPP, using three approaches:
maximume-likelihood model selection, independent-effects analysis, and structural equation modeling. These new ana-
lyses showed that about half of the global variation in NPP could be explained by M, combined with climate variables
and supported strong and direct influences of climate independently of M, both for NPP and for net biomass change
averaged across the known lifetime of the stands (ABC = average biomass change). We show that [, is an important
climate variable, intrinsically correlated with, and contributing to mean annual temperature and precipitation (T,n, and
Pann), all important climatic drivers of NPP. Our analyses provide guidance for statistical and mechanistic analyses of
climate drivers of ecosystem processes for predictive modeling and provide novel evidence supporting the strong,
direct role of climate in determining vegetation productivity at the global scale.
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temperature and precipitation from tundra to the tem-

Introduction '
perate zone and sometimes from the temperate zone to

Understanding climate effects is critical to anticipate
the impacts of climate change on ecosystem processes,
such as carbon storage, which have feedbacks on the
climate system. According to current textbooks on
physiology and ecology, climate has strong, direct
impacts on net primary productivity (NPP) in ecosys-
tems worldwide (Begon ef al., 2006; Chapin et al., 2012;
Taiz et al., 2015). Many studies have established empiri-
cal relationships between NPP and climate within and
across ecosystems (e.g., Leith, 1975; Schuur, 2003; Del
Grosso et al., 2008). There are well-established trends
for the increase of NPP across ecosystems with higher
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the tropics (Huston & Wolverton, 2009; Chapin et al.,
2012; Gillman et al., 2015), and evidence for the influ-
ence of climate change on specific ecosystems is accu-
mulating weekly (e.g., Brienen ef al., 2015). Most
approaches to examining relationships between NPP
and climate across ecosystems considered the total
effect of climate variables on NPP, that is, both direct
effects and those that are indirect, via differences in
stand structure. Thus, the direct effects of climate
include its influence on the physiological and environ-
mental determinants of plant growth, which are
directly regulated by temperature and water avail-
ability, including the kinetics of photosynthetic rates
and respiration rates and plant biomass allocation
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(Berry & Bjorkman, 1980; Geider et al., 2001; Huxman
et al., 2004; Chapin et al., 2012; Long, 2012; Vila et al.,
2013; Coomes et al., 2014; Lichstein et al., 2014). Indirect
effects of climate on NPP include the influence of
climate on the structure of given ecosystems. For exam-
ple, NPP is strongly influenced by total stand biomass
(Mo (Keeling & Phillips, 2007; Pan et al., 2013), and
stands are often larger where rainfall is higher (Pregit-
zer & Euskirchen, 2004; Keeling & Phillips, 2007;
Coomes et al., 2014).

Resolving and disentangling the direct and indirect
effects of climate on NPP is clearly important, because
direct effects would signify more immediate responses
to ongoing climate change. However, a recent paper
(Michaletz et al., 2014) has challenged the consensus,
arguing, based on a statistical analysis of a global data-
set for woody plant-dominated communities, that cli-
mate has negligible direct influences on NPP at the
global scale. They explained this conclusion as the
result of plants’ convergence in productivity despite
global climate variation due to ‘selection to maximize
plant growth across climate gradients’. They hypothe-
sized that climate may have indirect effects, although
these were not presented or quantified.

Our examination of their statistical analysis revealed
serious flaws that resulted in erroneous conclusions.
We conducted new analyses of the same database, to
resolve and disentangle the effects of climate and stand
variables on NPP using three approaches — maximum-
likelihood model selection, independent-effects analy-
sis, and structural equation modeling — all of which
point to the opposite conclusion: there are direct and
very large effects of climate on world vegetation pro-
ductivity at a range of timescales. This debate is impor-
tant for analyses to resolve the influence of climate on
ecosystem processes.

Analyses of global NPP by Michaletz et al. and
their pitfalls

Michaletz et al. rejected a direct role for climate in
determining NPP based on four analyses, each of which
contained flaws (Table 1). To clarify the analyses, we
present a synthetic schema of the linkages among stand
variables, climatic variables, and ecological rates
(Fig. 1), based on standard understanding and defini-
tions of terms (Chapin et al., 2012; Malhi et al., 2015).
Climate variables may have direct effects on gross pri-
mary productivity (GPP) and/or on autotrophic (.e.,
plant) respiration (R,) and therefore on NPP, where
NPP = GPP—R,. In addition, a higher stand biomass
(Myop) will tend to increase GPP, R,, and NPP, and
changes in stand age (2) might also influence NPP and
its components. Because climate variables can also set
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constraints on My, there may be indirect effects of
climate variables on NPP, via M, and (by association)
a. Subtracting from NPP the biomass losses due to plant
mortality followed by decomposition and heterotrophic
respiration (Rp) result in the net biomass change
(NBC = NPP—R;), which in turn drives changes in
M;or- The NBC is equivalent to, or translatable to the
‘net ecosystem production” (NEP), the change of
organic matter or carbon mass in the ecosystem (Fer-
nandez-Martinez et al., 2014). The NBC is determined
fundamentally by NPP for stands that are increasing in
biomass, although in disturbed or declining stands,
NBC can be negative, when R}, exceeds NPP. The stand
age-averaged biomass change (ABC) is the average of
NBC over the entire known age of the stand, which can
also be determined as M,/ a.

In their first analysis, Michaletz et al. tested the corre-
lations of NPP with its primary drivers in Fig. 1, that is,
with stand and climate variables. Michaletz et al. noted
the apparently strong correlation between NPP and
mean annual temperature (T,,,) and mean annual pre-
cipitation (P,ny,) in their database — correlations similar
in strength to that between NPP and stand biomass
(Mo replotted in Fig. 2b—d; see Appendix S1). In our
analyses, NPP indeed correlated with all the climate
variables in the Michaletz ef al. database, including also
the length of growing season (Iy), and growing season
temperature and precipitation (Tys and Pg,, respec-
tively; Fig. 2a, and b and c insets). Michaletz et al.
argued that NPP was also strongly associated with
stand age (1), although they presented a different kind
of evidence for this: they plotted NPP vs. M, relation-
ships for four stand age classes. They found that
younger stands had higher NPP than older stands at a
given M (replotted in our Fig. 2d), which they attrib-
uted to stand age-related decline in NPP at the global
scale. However, this conclusion arose from a spurious
graphical analysis (see Appendix S52). When we applied
the same test for correlation of NPP with a that Micha-
letz et al. performed for the other variables (Fig. 2a—c),
we found a very weak negative relationship of NPP to a
(R? = 0.05; P < 0.001; Fig. 3a). Indeed, NPP was statisti-
cally independent of a for stands > 35 years (R* = 0.004;
P =0.08; n =972) or > 50 years (R* = 0.002; P = 0.28;
n = 676; Fig. 3b), which is when pronounced declines
in growth occur in most natural woody ecosystems
(Gower et al., 1996, Weiner & Thomas, 2001; Pregitzer
& Euskirchen, 2004; He et al., 2012). Stand age-related
growth reductions are ecosystem specific, and the sam-
pling by Michaletz et al. of ecosystems of different ages
in the database could not resolve this. Our analyses
suggest that the apparently higher NPP of stands
< 50 years in this database was instead explained by a
sampling bias, as these young stands were sampled in
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Fig. 1 Synthetic schematic of the linkages among climatic variables, stand variables, and production and loss rates (in red, brown,
green, black, and blue, respectively). Climate variables may have direct effects on gross primary productivity (GPP) and/or autotrophic
respiration (R,) and therefore net primary productivity (NPP). In addition, a higher stand biomass (M) will tend to increase GPP, R,,
and NPP and changes in stand age (a) might also influence NPP and its components. Because climate variables can also set constraints
on M, there also may be indirect effects of climate on NPP, via M, and (by association) a. Subtracting from NPP the biomass losses
due to heterotrophic respiration (Ry,) gives in the net biomass change in the system (NBC), which in turn drives changes in M. (We
note that the mortality of trees, followed by their decomposition, is accounted for in Ry). The stand age-averaged biomass change
(ABC) is the average of NBC over the known age of the stand developed from bare ground and can also be calculated as M;,/a. One
important implication is that if M, and a are used in combination to predict NPP, as done by Michaletz et al., a circularity arises,
because ABC = M,/a, and thus, one is predicting NPP not from primary drivers, but from ABC, which is downstream variable mech-
anistically driven by (and statistically associated with) NPP. Such an analysis loses resolution to detect climate influences on NPP. Note
that this formulation focuses on the processes determining NPP within a given ecosystem; variation among ecosystems in NPP (i.e., in
a global analysis) should be driven by the same factors, although other sources of variation play a key role, for example, differences in
the pool of species and their traits. Additionally, climate, M. and a may also have potential influences on R, (not shown). Our analyses
disentangled the direct vs. indirect effects of climate on NPP and showed substantial direct as well as indirect effects of climate on
NPP.

moister, warmer climates with 1-2 month longer grow- strong predictors of NPP, a strong influence of a
ing seasons on average than the older stands (Ap- on NPP at the global scale was not supported by
pendix S2). Thus, while both climate and M, were our analysis.
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Fig. 2 Correlations of net primary productivity (NPP) and stand age-averaged biomass change (ABC = M, divided by stand age, )
with climate variables and stand biomass (M), from the global database compiled by Michaletz et al. (2014). Main panels B, C, and D
are replotted from Michaletz et al. (2014), and additional plots represent our novel analyses. Notably, ABC is highly correlated with
NPP (Fig. 4) and shows the same correlations with climate variables. Climate variables are (a) and (e) length of growing season (I4;
R? =0.31 and 0.28, respectively; P < 0.001; (b) and (f) mean annual temperature (T,,y; R? =0.30 and 0.24, respectively; P < 0.001) and
inset with gray symbols, growing season mean temperature (T,s; R* = 0.12; P < 0.001); (c) and (g) mean annual precipitation (Pann;
R? = 0.28 and 0.22, respectively; P < 0.001) and inset with gray symbols, growing season mean precipitation (Pgs; R? =0.29; P < 0.001);
and (d) M, (power law fitted; R? = 0.31; P < 0.001); black, blue, orange, and gray points represent, respectively, stands 0-50, 51-100,
101-200, and >201 years old. Lines are fitted by least squares regression; for all relationships but those with M, the correlations were
stronger with untransformed than log-transformed data, but remained significant in either form.
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Fig. 3 Plots of net primary productivity (NPP) against stand age from the global database compiled by Michaletz et al. (2014), for (a)
all 1247 woody dominated ecosystems in the database (R? = 0.05; power law fitted, given its higher correlation than linear; P < 0.001)
and (b) for stands >50 years of age. R = 0.002; P = 0.28; n = 676).

Second, Michaletz ef al. argued that the correlations
of NPP with climate variables should be discounted,
based on a novel interpretation of ly. They calculated
the variable NPP/I,, as a ‘more instantaneous’ version
of NPP and found only weak relationships of NPP/ I
with growing season temperature (Tg) and precipita-
tion (Pgs; R? = 0.026 and 0.017, respectively; P < 0.001),

and concluded from this analysis that there is a negligi-
ble direct effect of climate on NPP. They further argued
that the strong correlation of NPP with T,,, found in
their first analysis (Fig. 2b), and in previous studies,
was spurious, arising only as an artifact of the correla-
tion of Tan, with Igs. Michaletz et al. thus considered the
influence of Iz not to be a direct climatic effect and

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 12-24



featured this conclusion in their Abstract. In our view,
this is a misclassification of I, and by controlling out
the effect of I, on NPP, Michaletz et al. removed much
of the influence of climate on NPP before testing its cor-
relations with other climate variables. A clear under-
standing of Iy as a primary climate variable is essential,
because it is an important driver not only of NPP, as
shown in many previous studies, and as we found for
the Michaletz et al. database (Fig. 1a), but it is also a
major determinant of the geographical distribution of
biomes (Walter, 1985; Chapin ef al., 2012). Indeed, Iy
can be considered as a climate variable by its calcula-
tion and also geophysically, mathematically, and bio-
logically. I was calculated from climate data (as the
number of months with mean minimum temperature
greater than 0.6 °C and a moisture index > 0.08, consid-
ered as thresholds of air temperature and precipitation
for woody plant growth). Geophysically, ;s and T, are
intrinsically correlated across locations globally, shift-
ing downward with latitude and altitude and increas-
ing with continentality. The same is true of [z and Pg,
but to a lesser extent given that the intrinsic correlations
of Py with latitude, altitude, and continentality are to
some extent decoupled by winds and ocean currents
that influence rainfall independently of latitude and
altitude. Mathematically, lgs is a fundamental climatic
component of Ton, and Pypn:

Tann = lgs X Tgs 4 (1 — lgs) X Thgs (1)

Pann = lgs X Pgs + (1 = Lgs) X Prgs (2)

where in this formulation, [, is expressed as a fraction
of the 12 months of the year, and Tygs and Py, the tem-
perature and precipitation, respectively, of the non-
growing season. Simplifying further,

Tann = lgs(Tgs - Tngs) + Tngs (161)
pann - lgs(Pgs - Pngs) + Pngs (2&)
Thus, l,s is a component of T,n, and P, and,

because it is also an intrinsic geophysical correlate of
their other components, Tgs and Pg, with which it is
multiplied, the effects of [z on Tann and Pany, are quanti-
tatively very strong. All terms in these equations,
including lgs, are biological climatic drivers too, being
determinants of the amount of energy available annu-
ally to the ecosystem for metabolism. Indeed, I, is
defined as an interface of biology with climate: the win-
dow of time that permits plant growth. I, represents a
tighter constraint with much less wiggle room for
plants to compensate by adaptation or acclimation than
Tgs or Pgg. While species can acclimate or adapt to some

extent to mitigate against lower Tgs or Pg, producing

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 12-24
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species variation in responses to Ty Or Pge, a community
cannot mitigate a shorter I 4 as readily, given its defini-
tion as the days above the minimum threshold for all
plant growth. A shorter I will certainly narrow the
growing window for most or all species. For all these
reasons, I, captures more of the influence of climate on
NPP than the other factors in Eqns (1) and (2), in the
database of Michaletz et al., and in previous studies of
drivers of NPP and the limits of biome distributions
globally (Begon et al., 2006; Chapin et al., 2012). Conse-
quently, in our view, the weak correlation of NPP/ly
with Tgs or Py does not imply that the correlation of
NPP with Ton, or with P,,, was spurious, as Michaletz
et al. argued. Controlling for I, before testing the rela-
tionship of NPP to other climate variables removed a
major climate variable which was a correlate of the
other climate variables and thus does not test the influ-
ence of climate ‘more directly’. Rather, the strong rela-
tionships between NPP and Iy, Tgs, Tann, Pgs, and Pann
all imply a strong influence of climate on NPP.

For their third and fourth analyses, Michaletz et al.
introduced a multiplicative model, which they derived
from metabolic scaling theory, with which, they
argued, NPP can be strongly predicted without the
need for any climate variables. They described NPP as
a multiplicative function of the variables at the top of
Fig. 1, that is, My, and a, precipitation (Pan, or Pg),
temperature (Tnn Or Tge) and Iy, and constants and fit-
ted parameters (eqn 3 of Michaletz et al., 2014, here
referred to as Eqn M3):

In(NPP) = aIn(Miot) + o, In(a) — kET + apIn(P)

+ algs In (lgs) + ﬁoy] (MB)

Michaletz et al. found this model had a high R? of
0.77, which they attributed to the strong explanatory
power of M, and a, and a negligible influence of cli-
mate. However, we found that the high R? of Eqn (M3)
arose due to a hidden circularity from the use of both
Mo and a as multiplicative predictors. Equation (M3)
can be rewritten as:

In(NPP) = —o, In(ABC) + (0t + o) In(Mior) — %
+opIn(P) + oy, In(Igs) + By
(M3a)

(see Appendix S3). Thus, Eqn (M3) effectively uses the
stand age-averaged biomass change (ABC) as a predic-
tor variable, because ABC = M,/a (Fig. 1). Yet, ABC is
mechanistically determined by NPP and statistically
correlated with NPP (Figs 1 and 4; R?=0.71; P < 0.001;
see Appendix S4). Thus, Eqn (M3) predicts NPP from
ABC which is its intrinsic correlate (note that the fitted
parameter «, takes a negative value, so the relationship
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Fig. 4 Correlation of net primary productivity (NPP) with
stand age-averaged biomass change (ABC = M, divided by
stand age, a) for the database of 1247 woody plant-dominated
ecosystems compiled by Michaletz et al. (2014). R* = 0.71 for
power law fit; P < 0.001.

of predicted NPP to ABC is positive). Indeed, of all fac-
tors in Eqn (M3a), ABC is the strongest driver — the R?
value was 0.71 for predicting NPP from ABC, close to
that for the full model. Further, we found that ABC was
itself strongly correlated with climate variables
(Fig. 2e—g), supporting climate effects not only on NPP,
but also on biomass accumulation averaged across the
known lifetime of stands worldwide.

In our view, the inclusion of the a term in Eqn (M3)
led to the flawed analysis of Michaletz et al., because
Mot and a together led to inserting ABC, a variable that
is logically downstream of NPP, mechanistically deter-
mined by NPP, and correlated with NPP (Figs 1 and 4)
into the predictive model for NPP, although a actually
had no added value as a predictor (Appendices S2 and
S3). Although Michaletz et al. intended the inclusion of
a in the model to account for age-related NPP decline in
older stands, such a role for 2 was not supported in the
database (Fig. 3a, b). Further, age-related declines in
NPP represent a stand-specific trajectory, highly vari-
able among species within and across ecosystems
(Gower et al., 1996, Weiner & Thomas, 2001; Pregitzer
& Euskirchen, 2004; He et al., 2012). The multiplicative
a term in Eqn (M3) with its single exponent fitted
across all ecosystems instead represents a ‘general” age-
related decline for all ecosystems, which was redun-
dant, being already modeled in Eqn (M3) as «, the fitted
coefficient for M,; a smaller « reflects a greater age-re-
lated decline across all ecosystems.

Michaletz et al. next argued that climate variables
were not important because they found that a simpler
model without climate variables, In(NPP) = aln(Mt)+
oz In(a) + fy 1, had nearly the same R? value as the full
model. They named this version, without climate vari-
ables as a ‘general scaling function’ to predict NPP
worldwide as a multiplicative power law function of
M, and a4, given their conclusion that only these two

variables mattered (their Fig. 3). However, rather than
establishing that M, and a are primary drivers of NPP,
this function simply predicts NPP from ABC, that is,
from M,t/a, which is circular given that ABC is intrin-
sically correlated with, and mechanistically down-
stream of NPP (Figs 1 and 4). Additionally, Michaletz
et al. stated that this simpler version without climate
variables was selected with greater likelihood in a
model comparison over Eqn (M3), which included cli-
mate variables; they reported AIC values of —1768 vs.
140. Such a strong discrepancy in AIC values suggests
an error, and indeed, we were unable to replicate this
result with their data. In our analyses of the database
using maximum-likelihood model comparisons, mod-
els including climate variables were always better sup-
ported, with lower AIC values, than models with M
and a alone (see section, “Rigorous approaches to test-
ing the direct and indirect influences of climate on
NPP”). Michaletz et al. also conducted a partial correla-
tion analysis considering the relationship of NPP to
each variable in eqn M3 while controlling for all of the
others and found that NPP was closely related only to
Mot and a, and weakly related to all individual climate
variables (including [,) when all the other variables
were controlled. From this analysis, they concluded
that ‘age and biomass together explained most of the
variation in NPP’. That was a counterintuitive conclu-
sion, because NPP was correlated as strongly with cli-
mate variables as with M, and much more strongly
than with a (Fig. 2a—d). Indeed, the partial correlation
analysis conducted by Michaletz et al. was inappropri-
ate for resolving the influence of climate variables. As
Murray & Conner (2009) pointed out, ‘partial correla-
tions are not designed to partition the variance shared
between multiple correlated predictors and the depen-
dent variables’. More specifically, in this global data-
base, the climate variables Tann, Tgs) Pann, Pgs, and Igg
were positively intercorrelated  (R* = 0.073-0.90;
P <0.001), so partialing out any one or more climate
variables cancels the influence of others and removes
the ability to resolve their influence in a partial correla-
tion analysis (Zar, 1999). Additionally, partialing out
both M. and a together removes much of the variation
because the two define ABC, an intrinsic correlate of
NPP (Fig. 4), which is also correlated with the climate
variables (Fig. 2e—g). Finally, the apparent importance
of a in this partial correlation analysis also arose from
that circularity — when controlling out M., 4 becomes
an important predictor of NPP due to a statistical arti-
fact (see Appendix S2). Such a partial correlation analy-
sis does not permit the inference of direct vs. indirect
drivers of NPP. Independent-effects analysis is an
appropriate approach and leads to the opposite conclu-
sion, that is, of strong direct influence of climate on
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NPP (see section “Rigorous approaches to testing the

direct and indirect influences of climate on NPP”).
Finally, Michaletz et al. developed a similar model to

predict NPP/I, (their eqn 4, here referred to as Eqn M4)

In(NPP/l45) = odn(Mot) + o In(a) —

+ Boz

E
kT, + ap In(Pgs)

(M4)

and applied this model in the same way as for
Eqn (M3), finding an R? of 0.44, and that in a partial
correlation analysis, M. and a were the best predictors,
with a small additional influence of Ty or Pge. This
analysis combined the errors described above: remov-
ing the influence of climate by dividing NPP by g, an
important climate variable that is correlated with the
others; including the circular term ABC, arising from
including both M, and a; and inappropriate use of
partial correlation analysis to partition variance among
correlated factors.

Michaletz et al. concluded from their analyses that cli-
mate had a negligible direct influence on NPP. They pro-
posed that climate might perhaps indirectly influence
NPP through M, and a (Fig. 1) although they did not
test that hypothesis. In fact, our analyses showed that in
their database, M correlated very weakly with T,,n,
Tgss Pann, OF Pgs (R* = 0.014, 0.020, 0.10, 0.048, respec-
tively; P < 0.001) as did a (R* = —0.10, 0.12, 0.00017,
0.012; P < 0.001 for all but P, P = 0.66). The inability
of Michaletz et al. to resolve the direct influence of cli-
mate on NPP arose from the flaws of their analyses.

Rigorous approaches to testing the direct and
indirect influences of climate on NPP

Michaletz et al. made a useful contribution by compil-
ing a valuable database and explicitly attempting to
resolve the variables that influence NPP. However, the
Michaletz et al. analyses were subject to the flaws
described above (summarized in Table 1), and their
multiple regression and partial correlation analyses
were not appropriate to test the relative importance of
direct and indirect effects of climate on NPP. Three
powerful approaches applicable to such a question —
although not previously used, to our knowledge, to
analyze the drivers of NPP — are maximum-likelihood
model selection (MLMS; Hilborn & Mangel, 1997; Burn-
ham & Anderson, 2002), independent-effects analysis
(IEA; Murray & Conner, 2009), and structural equation
modeling (SEM; Grace, 2006; Grace et al., 2012). When
we applied these approaches to the compiled dataset of
Michaletz et al., each provided special insights and they
all converged in supporting climate as a direct driver of
NPP across ecosystems globally (Table 2).
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We applied MLMS to the Michaletz et al. dataset
comparing Eqns (M3) and (M4) with more parsimo-
nious models based on removing climate variables (see
Appendix Table S1). In the analysis of Eqn (M3), six of
seven tested models that included climate variables
were selected over the model based on M,; and a with-
out climate variables (AAIC. = 3.6-79; note that a
AAIC, of >2 is a basis for rejecting models). This finding
was supported whether annual or seasonal means were
used for temperature or precipitation (Appendix
Table S1). According to these models, global variation
in Iy, Tann, and Pan, drove variation in NPP by 60%,
51%, and 30%, respectively (Appendix Table S1). The
models with 2 removed, to eliminate the hidden circu-
larity of including ABC as an input, also showed far
greater support when including climate variables
(AAIC, = 65-414; Table S1). According to these models,
global variation in Iy, Tann, and Pun, drove NPP to vary
by 4.2-fold, 3.6-fold, and 2.1-fold, respectively (Fig. 5a—
o). When testing models for NPP normalized by g,
thus already removing much of the influence of climate,
models with climate variables included were still
selected with greater likelihood than models with M
and a alone (Table S1). This analysis demonstrates that
climate variables Ig,, temperature, and precipitation
have strong, quantitatively important influences on
NPP independently of M, and a.

Second, we used independent-effects analysis based
on Eqn (M3) to analyze the dataset. We found that cli-
mate variables had strong effects on NPP indepen-
dently of M, and a, with climate variables amounting
to 25-28% of all the variables’ influence on NPP,
whether climate variables were considered as annual or
growing season means (Fig. 6a; Appendix Table S1).
Further, when testing the model based on Eqn (M3) but
removing the a term, to avoid the hidden circular term
ABC, the climate variables accounted for 45-50% of all
of the variables’ influence on NPP, similar to the 50—
55% explained by M, (Fig. 6b). The lack of importance
of a was confirmed by a test of the model based on
Eqn (M3) but without the M, term, which showed that
a alone had only a small effect on NPP, that is, 7-8% of
all the variables’ influence (Fig. 6c). When testing
Eqn (M4), in which NPP was controlled by I, the
influence of temperature and precipitation was much
reduced, consistent with the fact that [,; represents a
major component of T,y and P,,, and its being an
intrinsic geophysical correlate of Tgs and Pgs (Eqns la
and 2a) — yet the remaining climate variables explained
7-18% of all the variables’ influence, or, testing the
model based on Eqn (M4) but not including a, 6-16% of
all the variables” influence. All these analyses indicate a
strong, direct influence of climate on NPP, indepen-
dently of M and a.
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Fig. 5 Sensitivity analysis showing the strong influence of cli-
mate variables on net annual productivity (NPP) based on mod-
els including individual climate variables and stand biomass
(M), parameterized by maximum likelihood for the global
database compiled by Michaletz et al. (2014). For each model,
the effects on NPP are shown of increasing individual variables
from the minimum value in the database to the maximum, with
the other variable at its mean value in the database. (a) model
predicting NPP from the length of the growing season and M.
(In(NPP) = odn(Miot) + o4, In(lgs) + By1; R* = 0.50; P < 0.001);
(b) from mean annual temperature (Tann) and Mo
(In(NPP) = oIn(Miot) — (E/kTamn) + fo1; R* = 0.50; P < 0.001);
and (¢) from mean annual precipitation (Pan,) and Mo
(In(NPP) = aIn(Miot) + op In(P) + fo1; R* = 0.35; P < 0.001).

Third, we conducted structural equation modeling
(SEM) to explicitly test for the direct and indirect
dependence of NPP on climatic variables. Model A
represents the hypothesis of Michaletz et al., in which
climate variables could have direct influence on NPP
or could influence NPP indirectly via M, and a
(Fig. 7a; Table S2). In model B, we removed the a
term to avoid the hidden circularity (Fig. 7b). Model
C was the same as model B, but with additional cau-
sal relationships representing the influence of Iz, on
Tann and P,,, consistent with Eqns (1a) and (2a)
(Fig. 7c). We found that model A was not supported
(Table S2), probably due to its hidden circularity.
Models B and C were highly supported and model B
using growth season climate variables had the lowest
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Fig. 6 Results of independent-effects analysis applied to the
models for net annual productivity with climate variables, stand
biomass (M), and stand age (a) from the global database com-
piled by Michaletz et al. (2014): (a) full Eqn (M3) model, includ-
ing M, a, the length of growing season (Ig), mean annual
temperature (Thn,), and mean annual precipitation (Punn)
(In(NPP) = oIn(Mot) + o In(a) — (E/KT) 4 ap In(P) + oy In(lgs)+
Pors R? =0.74; P < 0.001); (b) model including Mioy, lgs, Tann, and
Pann (IN(NPP) = adn(Miot) — (E/KT) + ap In(P) + o, In(lgs) + Boss
R? =0.51; P < 0.001); and (c) model including a, lgs, Tann, and Papn
(In(NPP) = o, In(a) — (E/KT) + op In(P) + oy, In(lgs) + fo1; R* =
0.26; P < 0.001). Similar results were found using growing season
mean temperature and precipitation (Table S1).

AIC. In all the models, the total effect of climate was
approximately equal to or stronger than that of M
(each contributing about 50% of the determination of
NPP), and the direct effects of climate on NPP were
approximately equal to or stronger than indirect
effects (47-94% of the total effect of climate was
direct; Table S2).
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Thus, rather than finding negligible direct effects of
climate variables on NPP, all three of our analyses con-
verged in the same result, opposite to that of Michaletz
et al. (2014). We found strong, direct climatic effects,
equal to or stronger than indirect effects of climate on
NPP via My or a. We found that [, is the strongest cli-
matic driver of NPP with additional, important, and
independent explanatory power of temperature and
precipitation, whether averaged annually or for the
growing season. All these analyses highlighted the cru-
cial and direct role of climate in determining NPP, con-
sistent with mechanistic principles, and underlining the
need to address the influence of climate change impacts
on global vegetation.

Fig. 7 Structural equation models (SEM) for net annual
productivity (NPP) as determined by climate variables, stand
biomass (M), and stand age (a) applied to the 1247 ecosystems
worldwide in the dataset of Michaletz et al., 2014; climate vari-
ables include length of growing season (lg), and mean annual
or mean growing season temperature and precipitation (Tann,
Tgs, Pann, and Pgg, respectively). Model A was based on the
hypothesis of Michaletz et al. that climate variables would have
direct effects on NPP or indirect effects via M, and stand age
(a) and that model was not supported, likely due to the circular-
ity of including Mo and a (and therefore ABC) as predictors of
NPP. Model B was the same model without including the a
term, and model C had additional influence of Io; on T and P (as
explained in the text). Each model was tested using annual or
mean temperature and precipitation (shown here), or growing
season means (Tg, and Pg, rather than T, and Pany). The best
supported model by AIC was model B using growing season
mean climate variables (Table S2 for direct and indirect effects
of each factor). To obtain the standardized path coefficients, z-
transformation was used to adjust the means of variables to zero
and their variances to 1.0. Directional arrows linking two vari-
ables depict direct effects (all significant at P < 0.05). The thick-
ness of the solid arrows reflects the magnitude of the
standardized SEM coefficients, which are listed beside each
path.

Avoiding pitfalls and improving resolution in
future studies of the drivers of NPP

We agree with Michaletz et al. that novel analyses are
needed to clarify NPP and its drivers and to improve
predictive power. However, we disagree with the over-
all conclusion of Michaletz et al. that climate has a neg-
ligible direct impact on NPP. We found that strong
direct effects of climate on NPP can be resolved at the
global scale using rigorous approaches such as MLMS,
IEA, and SEM. Our analyses are especially novel in
demonstrating that combining stand structure and cli-
mate data enables a prediction of NPP across ecosys-
tems (R? of approximately 0.50), with climate variables
and M, contributing strongly to this predictive power.

Michaletz et al. proposed several explanations for
why climate should not directly influence NPP at the
global scale. First, they suggested that the influence of
climate may be indirect via stand variables, because
NPP would increase with M, and decline with a4, and
these stand variables might in turn be constrained by
climate, although our analyses showed that direct
effects were equal to or outweighed such indirect
effects. Second, they posited that plants should be
selected globally for rapid growth and that biochemical
adaptation and/or acclimatization to cold temperatures
may offset temperature effects, resulting in a dampened
relationship of NPP to temperature. We argue that local
adaptation and plasticity cannot completely overcome
the effects of global climate variation on growth, and

© 2015 John Wiley & Sons Ltd, Global Change Biology, 22, 12-24



sometimes they can reinforce the effects of climate, as
shown by studies of field and common garden plants in
which growth-related traits are equally or more
strongly related to climate of origin in the field than
when grown in a common garden, and studies showing
that cold temperatures limit growth in many terrestrial
ecosystems (Clausen et al., 1940; Cordell et al., 1998;
Reich & Oleksyn, 2008). Because they did not see an
effect of temperature, Michaletz et al. also argued that
‘future studies move away from using mean annual
temperature and instead use air and plant body tem-
peratures measured during the growing season and/or
key periods of development’. This is bad advice; it is
well known that leaf temperatures correlate closely
with air temperature over hourly and daily timescales
(Jones, 2014). Finally, Michaletz et al. questioned the
appropriateness of their own climate data, interpolated
from climate models using 29-year means. We agree
that such data are imprecise. Yet, our analyses were
able to identify strong direct influences of climate on
NPP and ABC.

The first rule of statistical inference that students
learn is that correlation does not necessarily imply cau-
sation. It therefore follows that the strength of a correla-
tion does not necessarily imply the strength of a causal
relationship. If we can do experiments, we can disen-
tangle causal networks with strong inferences. When
we have only descriptive data, we have to make
assumptions before we can make inferences about cau-
sal factors, and any conclusions we reach are highly
dependent on those assumptions. Michaletz et al. made
several assumptions about what are and are not climate
variables and about causal chains, assumptions that did
not withstand critical analysis. They used input vari-
ables that already include the effects of climate (i.e.,
ABC = M,.t/a) and removed climate from a predicted
variable before testing (i.e., NPP/Iy,). Therefore, adding
climatic variables in these analyses did not provide
additional predictive power. Statistical approaches
such as MLMS, IEA, and SEM not only help us to get
the strongest inferences from data, but also force us to
be clear and ‘“up front’ about the assumptions we are
making, so that these can be scrutinized and open to
criticism.

There is actually a great deal of experimental evi-
dence for the direct role of climate in determining NPP.
If we irrigate a dryland, NPP increases enormously. If
we warm arctic tundra, NPP increases significantly
(Natali ef al. 2012). These are obvious direct effects, and
many strange assumptions would be necessary to inter-
pret these as indirect effects.

This debate highlights the extent to which our
understanding of climate impacts on ecosystems
worldwide has been fragmentary. Our work focused
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mainly on approaches to testing the direct influence of
climate on NPP given the database compiled by
Michaletz et al. However, further improvements are
needed both in the quality and the representativeness
of the dataset for NPP (see Appendix S5). Local cli-
mate data are scarce for many ecosystems of the
world, a situation currently being ameliorated (Ander-
son-Teixeira et al., 2014; Schimel & Keller, 2015; Stern-
berg & Yakir, 2015). As data become available,
analyses will require close scrutiny if we are to tease
apart the direct and indirect influences of climate on
NPP and other aspects of ecosystem structure and
function. In the models we tested that predicted NPP
from climate and M., excluding a to avoid circularity,
the R? values were approximately 0.50. We need to
include other factors beyond climate and stand bio-
mass for the prediction of NPP, including soil fertility
(Fernandez-Martinez et al., 2014), composition and
diversity of communities (Dijkstra et al., 2011; Gillman
et al., 2015), species interactions (Adler et al., 2012),
and disturbance (Chave et al., 2001). Analyses with
improved sampling, avoiding the described pitfalls,
and implementing a range of high-resolution statistical
approaches will result in greatly improved predictive
models relating ecosystem functioning to climate (and
other factors), in turn leading to more accurate projec-
tions for given ecosystems, and reliable information
for next-generation dynamic global vegetation models
(Prentice et al., 2015), which will best inform policies to
enhance the preservation of ecosystems and the miti-
gation of ongoing climate change.
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